Phase 2 Ground Investigation

Client: Lidl Great Britain Ltd

Penmaen Road, Blackwood

Report No: 1271.03.01

December 2024

Executive Summary

Lidl Great Britain Ltd commissioned Remada Ltd to conduct a Phase 2 Ground Investigation at the site of a proposed store at Penmaen Road, Pontllanfraith, Blackwood, NP12 2DY. This report follows a Phase 1 Preliminary Risk Assessment (Remada report reference 1271.01.02 dated June 2024). This report should be read in conjunction with Remada's Coal Mining Risk Assessment 1271.02.02.

Summary of Phase 1 Desk Study

The earliest available historical mapping of 1879 shows the site to be divided into two fields until 1953 when a 'Furniture Factory' occupied the northern central areas of the site. these areas. By 1971, the present-day electricity substation had been installed in the north-western corner of the site. Between 1975 and 1986, the site became occupied by a 'Council Depot', with the southern area of the site being redeveloped from a heathland to hardstanding around this time.

Published geological maps record that the site is underlain by superficial Devensian Till, designated as a Secondary Undifferentiated Aquifer, and bedrock of the Grovesend Formation, designated as a Secondary (A) Aquifer. The site is not located within a groundwater Source Protection Zone (SPZ)

The Coal Authority Consultants Mining Report identifies the Mynyddislwyn Top Leaf coal seam being present 49m deep to the northeast of the site and 90m deep beneath the site, with an extraction thickness of 0.76m and last worked between 1873 and 1876. The Report states that probable unrecorded shallow mining is 'none' and there are no mine entries within 100m of the site. However, there are five claims for coal mining subsidence within 50m of the site boundary

Intrusive Investigation

The investigation comprised drilling thirteen (13 No) window sample holes (WS1 – WS9 and WS03A, WS06A, WS08A and WS09A) and executing four (4 No) CBR tests at locations indicated in Figure 2 between the 21st and 22nd of October 2024. Remada was also instructed to undertake three (3 No.) rotary open-holed boreholes (RBH01-03) to a target depth of 30m bgl, in order to investigate the potential coal mining legacy beneath the site. The findings of this rotary investigation, undertaken between 19th and 26th November 2024, have been incorporated into this Phase 2 report.

Made Ground was encountered within all of Remada's window sample boreholes to a maximum depth of 2.3m bgl (WS8A) in the south-western area of the site. Within the proposed Lidl store footprint, the made ground appeared to be relatively shallow and present to a maximum thickness of 1.3m (WS3A) where proven. However, this belies the shallow SPT refusals encountered within the majority of these window sample boreholes at depths ≤1m bgl.

Within the three rotary boreholes, the made ground was recorded to depths of between 2.7m and 3.0m bgl and underlain by superficial SAND & GRAVEL deposits. However, due to the open-holing nature of this drilling technique, it is usually difficult to detect a change in strata, unless there is a good contrast in properties such as colour, mineral content or hardness. Consequently, there is some uncertainty as to the current thickness of made ground across the study site at the present time.

The rotary boreholes recorded MUDSTONE and SILTSTONE at depths of between 7.6m and 11.0m bgl, which were interpreted as representative of the Grovesend Formation bedrock indicated on published geological mapping.

Human Health Assessment

The results of soil chemical analysis were compared to the Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Water Resources Assessment

The results of the soil chemical analysis undertaken have identified that concentrations of metals and inorganic contaminants are within the range of typically made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and, as such, are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants

as a result of infiltration of groundwater is likely to be limited. Consequently, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

Waste Classification

In general, the results of the chemical analysis indicate that the material would be classified as non-hazardous waste. Waste Acceptance Criteria (WAC) analysis has classified the waste as suitable for an inert landfill.

<u>Geotechnical Assessment – Lidl Store</u>

The thickness of the made ground beneath the proposed store footprint is anticipated to be circa. 2.5 to 3.0m based on the intrusive investigations to date. Due to buried obstructions in the made ground, (indicated in 1m refusals in five of the seven window samples targeting the proposed store footprint), made ground should be excavated and recompacted as graded fill.

Vibro-stone columns bearing in the natural SAND & GRAVEL deposits at depths of circa 3.0 – 5.0m bgl are considered a potential foundation solution, providing a minimum bearing capacity for either a raft or pad & strip foundation for a ground-bearing floor slab, as specified by the Structural Engineer. The strength, depth and composition of these SAND & GRAVEL deposits is unknown at the time of writing.

If pad foundations are selected, then a layer of compacted 6F2 capping overlying the existing but re-compacted made ground to a minimum specified bearing capacity is considered to be suitable beneath a ground bearing floor slab.

CBR values estimated from the DCP tests indicated that, near the surface, the CBR values were variable, with several values of <10% recorded. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced in compacted layers in accordance with an engineering specification.

A Design Sulphate Class DS-2 is considered appropriate for buried concrete, and an ACEC Class of AC-3s is considered appropriate for the location.

Excavation side walls may not be stable even in the short term without support or without being battered back to a safe slope gradient. A detailed inspection of the side slopes should be made during excavation and a risk assessment carried out to fully assess the support measures required.

No groundwater was observed within any of the boreholes during the intrusive investigation. During the monitoring period, water was found within WS05 at between 1.52m bgl and 1.53m bgl.

<u>Ground Gas</u>

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1. Gas protection measures are not required with respect to methane or carbon dioxide. However, the site is within an Intermediate Probability Radon Area and as such, basic radon protection measures shall be required.

Contents

1	INTE	RODUCTION	.4
	1.1	OBJECTIVES	.4
	1.2	SCOPE OF WORK	.4
	1.3	PROPOSED DEVELOPMENT	.5
	1.4	PREVIOUS REPORTS	.5
	1.5	LIMITATIONS	.5
2	SUN	IMARY OF PHASE 1 DESK STUDY	.6
3	SITE	WALKOVER	.9
4	ENV	IRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY	10
-	1 1		10
	4.1		10
	4.2	IN-SITE INVESTIGATION	10
	4.0	SOIL SAMPLING	11
	4.5	GAS & GROUNDWATER	11
	4.6	QUALITY ASSURANCE AND QUALITY CONTROL	11
	4.7	LABORATORY ANALYSIS & TESTING.	11
5	GEC	TECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS	13
-	51	GROUND CONDITIONS	13
	52	IN-SITU TESTING	14
	5.3	SOIL OBSERVATIONS	17
	5.4	GROUNDWATER OBSERVATIONS	17
	5.5	CHEMICAL ANALYSIS	17
	5.6	GEOTECHNICAL TESTING	18
6	GEN	IERIC QUANTITATIVE RISK ASSESSMENT	20
6	GEN 6.1	IERIC QUANTITATIVE RISK ASSESSMENT	20 20
6	GEN 6.1 6.2	IERIC QUANTITATIVE RISK ASSESSMENT	20 20 20
6	GEN 6.1 6.2 6.3	IERIC QUANTITATIVE RISK ASSESSMENT	20 20 20 20
6	GEN 6.1 6.2 6.3 6.4	IERIC QUANTITATIVE RISK ASSESSMENT 2 HUMAN HEALTH RISK ASSESSMENT 2 COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC 2 CONTROLLED WATERS RISK ASSESSMENT 2 GROUND GAS ASSESSMENT 2	20 20 20 20 21
6	GEN 6.1 6.2 6.3 6.4 6.5	IERIC QUANTITATIVE RISK ASSESSMENT 2 HUMAN HEALTH RISK ASSESSMENT 2 COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC 2 CONTROLLED WATERS RISK ASSESSMENT 2 GROUND GAS ASSESSMENT 2 REVISED CONCEPTUAL SITE MODEL 2	20 20 20 20 21 22
6	GEN 6.1 6.2 6.3 6.4 6.5 6.6	IERIC QUANTITATIVE RISK ASSESSMENT 2 HUMAN HEALTH RISK ASSESSMENT 2 COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC 2 CONTROLLED WATERS RISK ASSESSMENT 2 GROUND GAS ASSESSMENT 2 REVISED CONCEPTUAL SITE MODEL 2 WASTE CLASSIFICATION & WASTE ACCEPTANCE 2	20 20 20 21 22 22
6	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7	IERIC QUANTITATIVE RISK ASSESSMENT 2 HUMAN HEALTH RISK ASSESSMENT 2 COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC 2 CONTROLLED WATERS RISK ASSESSMENT 2 GROUND GAS ASSESSMENT 2 REVISED CONCEPTUAL SITE MODEL 2 WASTE CLASSIFICATION & WASTE ACCEPTANCE 2 HEALTH & SAFETY CONSIDERATIONS 2	20 20 20 21 22 22 22 22
6 7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC	IERIC QUANTITATIVE RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC Comparison of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC Controlled Waters Risk Assessment Image: Comparison of Soil Analysis Results with Human Health GAC Controlled Waters Risk Assessment Image: Comparison of Soil Analysis Results with Human Health GAC Ground Gas Assessment Image: Comparison of Comparison	20 20 20 20 21 22 22 22 22 24
6	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1	IERIC QUANTITATIVE RISK ASSESSMENT 2 HUMAN HEALTH RISK ASSESSMENT 2 COMPARISON OF SOIL ANALYSIS RESULTS WITH HUMAN HEALTH GAC 2 CONTROLLED WATERS RISK ASSESSMENT 2 GROUND GAS ASSESSMENT 2 REVISED CONCEPTUAL SITE MODEL 2 WASTE CLASSIFICATION & WASTE ACCEPTANCE 2 HEALTH & SAFETY CONSIDERATIONS 2 OTECHNICAL SITE ASSESSMENT: LIDL STORE 2 GEOTECHNICAL CONSIDERATIONS 2	20 20 20 21 22 22 22 22 22 22 22 24 24
7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2	IERIC QUANTITATIVE RISK ASSESSMENT Image: Constraint of the system o	20 20 20 21 22 22 22 22 22 22 24 24 24
7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3	IERIC QUANTITATIVE RISK ASSESSMENT Image: Constraint of the system o	20 20 20 21 22 22 22 22 24 24 24 24 25
7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4	IERIC QUANTITATIVE RISK ASSESSMENT Image: Construct the system of solid analysis results with Human Health GAC Controlled Waters Risk Assessment Image: Construct the system of solid analysis results with Human Health GAC Controlled Waters Risk Assessment Image: Construct the system of solid analysis results with Human Health GAC Ground Gas Assessment Image: Construct the system of solid analysis results with Human Health GAC Ground Gas Assessment Image: Construct the system of solid analysis results with Human Health GAC Waste Conceptual Site Model Image: Construct the system of solid analysis results with Human Health & Safetry Considerations Vaste Classification & Waste Acceptance Image: Considerations Image: Health & Safetry Considerations Image: Considerations Otechnical Site Assessment: Lidd Store Geotechnical Considerations Image: Considerations Foundations Image: Considerations Shrinkage and Swelling Image: Considerations Floor Slab Image: Considerations	20 20 20 21 22 22 22 22 22 24 24 24 25 25 25
6	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5	IERIC QUANTITATIVE RISK ASSESSMENT Imported Fill HUMAN HEALTH RISK ASSESSMENT Imported Fill Comparison of Soil Analysis Results with Human Health GAC Imported Fill Controlled Waters Risk Assessment Imported Fill Controlled Waters Risk Assessment Imported Fill Ground Gas Assessment Imported Fill Revised Conceptual Site Model Imported Fill	20 20 20 20 21 22 22 22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.6 7.7	IERIC QUANTITATIVE RISK ASSESSMENT Image: Construct of the system of	20 20 20 21 22 22 22 22 24 24 25 25 25 25 25
6	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	IERIC QUANTITATIVE RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC Comparison of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC Controlled Waters Risk Assessment Image: Comparison of Comparison of Soil Analysis Results with Human Health GAC Ground Gas Assessment Image: Comparison of Comp	20 20 20 21 22 22 22 24 24 25 25 25 25 25 25 26
7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	IERIC QUANTITATIVE RISK ASSESSMENT	20 20 20 21 22 22 24 24 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26
б 7	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	IERIC QUANTITATIVE RISK ASSESSMENT	20 200221 22222 24 225225 225226 226 227
8	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 CON 8 1	IERIC QUANTITATIVE RISK ASSESSMENT	20 20 20 20 20 20 20 20 20 20 20 20 20 20
8	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 CON 8.1 8.2	IERIC QUANTITATIVE RISK ASSESSMENT	20 20 20 21 22 22 24 24 25 25 26 27 27 8
6 7 8	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 CON 8.1 8.2 8.3	IERIC QUANTITATIVE RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC COMPARISON of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC CONTROLLED WATERS RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC CONTROLLED WATERS RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC GROUND GAS ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC Image: Comparison of Soil Analysis Results with Human Health GAC Waste Classification & Waste Acceptance Image: Comparison of Soil Comparison	20 200 220 221 222 24 225 25 26 27 28
6 7 8	GEN 6.1 6.2 6.3 6.4 6.5 6.6 6.7 GEC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 CON 8.1 8.2 8.3	IERIC QUANTITATIVE RISK ASSESSMENT Image: Comparison of Soil Analysis Results with Human Health GAC COMPARISON of Soil Analysis Results with Human Health GAC Controlled Waters Risk Assessment CONTROLLED WATERS RISK ASSESSMENT GROUND GAS ASSESSMENT Revised Conceptual Site Model Waste Classification & Waste Acceptance Waste Classification & Waste Acceptance Health & Safety Considerations DTECHNICAL SITE ASSESSMENT: LIDL STORE Geotechnical Considerations Strenchnical Considerations Shrinkage and Swelling Floor Slab Imported Fill Excavations and Temporary Works External Car Park Construction Protection of Buried Concrete General Construction Advice ICLUSIONS & RECOMMENDATIONS Gonclusions Recommendations Ground Gas Mutations Ground Gas	20 200 21 22 2 24 24 25 25 26 27 28 2 27 28 28 28 28 28 28 28 28 28 28 28 28 28

TABLES

Itline Conceptual Site Model
is & Groundwater Monitoring Data
mparison of Soil Chemical Analyses with GAC
mmary of TPH Soil Analysis

Phase 2 Ground Investigation Penmaen Road, Blackwood 1271.03.01, December 2024

Table 5	Plasticity Indices and Volume Change Potentials of the Cohesive Strata
Table 6	Refined Conceptual Site Model

Table 7NHBC 2023 Table 4 Minimum Foundation Depths

GRAPHS

Graph 1	Plot of Corrected SPT N Values vs Depth
Graph 2	Plot of Mass Shear Strength vs Depth

Graph 3 PAH Double Plot Ratio

FIGURES

Figure 1	Site Location Plan
Figure 2	Exploratory Hole Location Plan
Figure 3	Proposed Indicative Site Layout Plan

EXPLORATORY HOLE LOGS

APPENDICES

Appendix A	SPT Hammer Energy Test Certificate
Appendix B	Dynamic Cone Penetrometer Test Results
Appendix C	Laboratory Chemical Analyses
Appendix D	Laboratory Geotechnical Tests

lssue No	Date	Prepared By		Technical Rev	iew	Authorise	d
01	13.12.2024	P Searing	SM/	P Dickinson	P Did	G Jones	(Horen-

1 INTRODUCTION

Remada Ltd was commissioned by Lidl Great Britain Ltd (hereafter 'the Client') to undertake a Phase 2 Ground Investigation of a proposed store at Penmaen Road, Pontllanfraith, Blackwood, NP12 2DY at the location indicated in **Figure 1**. This report should be read in conjunction with Remada's Coal Mining Risk Assessment 1271.02.02.

1.1 Objectives

The objectives of this assessment are as follows:

- to examine whether there have been any potentially contaminative uses on the site or nearby land;
- to develop a conceptual model of the site to identify plausible pollutant linkages;
- to assess ground conditions in relation to the proposed development in relation to construction design issues, including the presence, nature, likely severity and extent of soil and groundwater contamination, which may be present, its potential environmental impact and likely requirement for further work; and
- Provide preliminary foundation design recommendations for the proposed development.

1.2 Scope of Work

The scope and layout of this investigation and report is generally in accordance with BS10175:2011+A2 2017 and the Environment Agency's Land Contamination Risk Management guidance for land contamination reports.

The scope of work comprised:

- 5 No window sample boreholes to target depths of 7m, including SPTs;
- 4 No window sample boreholes to target depths of 5m, including SPTs;
- 3 No combined groundwater and gas monitoring standpipes installed with window sample boreholes;
- 4 No California Bearing Ratio (CBR) tests within the car park area on made ground or natural soil that will be at the development formation level. In the absence of any specific information, the pavement formation level shall be considered to be a maximum of 500mm below the existing ground level or below organic topsoil;
- Suite of geotechnical classification and strength tests as appropriate to the soils and 4 No BRE Sulphate suites in accordance with BRE SD1;
- 5 No Chemical Analysis for asbestos (quantitative), pH, Arsenic, Beryllium, Cadmium, Chromium (trivalent & hexavalent), Copper, Mercury, Nickel, Lead, Selenium, Vanadium, Zinc, Fraction of Organic Carbon, TPHCWG, PAH(16) and Phenol.
- 2 No bitumen suites on asphalt samples for waste classification
- 4 No ground gas and groundwater monitoring visits to satisfy planning requirements; and
- Combined Factual & Interpretative Geoenvironmental Report.

Remada was also instructed to undertake three (3 No.) rotary open-holed boreholes (RBH01-O3) to a target depth of 30m bgl, in order to investigate the potential coal mining legacy beneath the site. The findings of this rotary investigation, undertaken between 19th and 26th November 2024, have been incorporated into this Phase 2 report.

The investigation methodology is presented in **Section 4**. Findings in **Section 5** and the Exploratory Hole Locations are indicated in **Figure 2**.

1.3 Proposed Development

It is understood that the proposed site use for the majority of the site will be a Lidl retail store with an associated car park and soft landscaping; the development will comprise a site area of 8600m². A proposed indicative site layout plan is presented in **Figure 3**, with the site accessed from a new entrance off B4254 to the north. The proposed store footprint is indicated to be in the western and south-western areas of the site, with the remaining areas being a combination of car parking, HGV access and soft landscaping. The electricity substation remains present in the northwestern corner of the site.

1.4 Previous Reports

The following Phase 1 Desk Study had been previously prepared for the site:

- Phase 1 Site Investigation & Preliminary Risk Assessment. Remada Ltd Report 1271.01.02 issued in June 2024.
- Coal Mining Risk Assessment. Remada Ltd report ref: 1271.02.02 issued in November 2024.

1.5 Limitations

The comments in this report and the opinions expressed are based on the information reviewed and observations during site work. However, there may be conditions pertaining to the site that this assessment has not disclosed and, therefore, could not be taken into account.

2 SUMMARY OF PHASE 1 DESK STUDY

The Executive Summary and Conceptual Site Model presented within the Phase 1 Desk Study are reproduced below:

Site Setting

The site occupies an approximately rectangular plot in the north-eastern area of the Penmaen Industrial Estate, situated to the west of Penmaen Road and south of the B4254 road. At the time of writing, the site comprises a Stagecoach bus depot, with associated bus stabling and servicing facilities.

The site is formed of two distinct areas. The northern half of the site is dominated by the main bus depot building, featuring a tri-pitched roof with associated flat-roofed offices along the northern and western fringes. A separate, pitched roof building is adjacent to the western boundary, whilst a flat-roofed electricity sub-station of brick construction is in the north-western corner. The majority of the southern half of the site is asphalt surfaced and used for the stabling of Stagecoach's local bus fleet. A small, rectangular patch of concrete is present adjacent to the site's southern boundary, although this appears to be flush with the surrounding surfacing.

The site boundary to the north is marked by the B4252 roadway, whilst vegetation marks most of the eastern and south-eastern boundaries. Palisade fencing appears to form the south-western boundary, although the site is open to south.

Site History

The earliest available historical mapping of 1879 shows the site to be divided into two fields extending off-site to the north, south and west. Except for the removal of one of two footpaths bisecting the site, the site remains unchanged until after the mapping of 1938. By 1953, the northern and central areas of the site have been redeveloped, with a large 'Furniture Factory' occupying these areas. By 1971, the present-day electricity substation had been installed in the north-western corner of the site. Between 1975 and 1986, the site became occupied by a 'Council Depot', with the southern area of the site being redeveloped from a heathland to hardstanding around this time.

Geology / Hydrogeology

Published geological maps record that the site is underlain by superficial Devensian Till, designated as a Secondary Undifferentiated Aquifer, and bedrock of the Grovesend Formation, designated as a Secondary (A) Aquifer. The site is not located within a groundwater Source Protection Zone (SPZ)

Mining

The Coal Authority Consultants Mining Report identifies the Mynyddislwyn Top Leaf coal seam as being present 49m deep to the northeast of the site and 90m deep beneath the site, with an extraction thickness of 0.76m and last worked between 1873 and 1876. The Report states that probable unrecorded shallow mining is 'none' and there are no mine entries within 100m of the site. However, there are five claims for coal mining subsidence within 50m of the site boundary.

Radon

The site is located in both a Lower Probability Radon Area (less than 1% of homes are estimated to be at or above the action level) and an Intermediate Probability Radon Area (5 to 10% of homes are estimated to be at or above the action level). Consequently, basic radon protective measures are considered necessary within the structural design of the proposed development.

Unexploded Ordnance (UXO) Risk

Freely available Zetica Unexploded Ordnance (UXO) risk mapping indicates the site to be located within an area where the bomb risk is 'Low'. Therefore, no UXO precaution measures are considered necessary for any subsequent intrusive investigation, based on the information available for the site to date.

Environmental Risk Assessment

The desk study has identified a number of on-site and off-site potential sources of contamination that would require further investigation. The following is recommended:

- Investigation of the lateral and vertical extent of made ground/fill beneath the proposed store footprint;
- Collection of soil and groundwater samples from the areas identified above for contaminants of concern; and
- Ground gas monitoring.

Geotechnical Assessment

It is recommended that a ground investigation be undertaken to enable preliminary foundation design. Given the records in the Coal Authority Consultant's Mining Report, it is recommended that a Coal Mining Risk Assessment is also prepared to determine the requirements for investigation and subsequent work relating to coal mining at and beneath the site.

Phase 2 Ground Investigation Stagecoach Depot, Pemaem Road, Blackwood

1271.03.01, December 2024

Potential Source Areas	Potential Contaminant of Concern	Pathways	Potential Receptor		Exposure Route (Human unless otherwise stated)	Po Ide Lir (unm	tential ntified nkage itigated)	Findings of Ground investigation	Risk (Un- mitigated)	Proposed Remediation (Mitigation) Measures	Residual Risk Estimation
On-site Sources				•	Direct Soil Ingestion	•	No	N/A	N/A	N/A	N/A
General Made Ground		Disturbanco duo									
Furniture Factory		to construction		•	Indoor Dust	•	Yes	(To be assessed	Potential risk	(To be	(To be
Council Depot		plant causing			ingestion			` (тва)		assessed (TBA)	assessed (TBA)
Bus Depot & Tanks		direct contact,		•	Skin Contact with	٠	Yes	As above	Potential risk	ТВА	TBA
Electricity sub-station	Ashestos /	dusts, vapours.	Occupants of		Soils Ekin Contact with		Voc	Aciabaya	Dotoptial rick	TDA	ТРА
,	Metals As, Be, Cd,		development /	•	Dust	•	res	AS above	POLEIILIALTISK	IDA	IDA
<u>Off-site Sources</u>	Cu, Cr (VI), Cr (III) Hg, Ni, Se, Va, Zn,	Direct Contact with occupants	building fabric	•	Inhalation of Outdoor Dust	٠	Yes	As above	Potential risk	ТВА	TBA
General Made Ground	Boron, TPH /PAH,	of the proposed		٠	Inhalation of	٠	Yes	As above	Potential risk	TBA	TBA
Electricity sub-	PCBs	development			Outdoor Vapours						
stations		Inhalation of	Adjacent	•	Inhalation of Indoor	•	Yes	As above	Potential risk	IBA	IBA
Residential properties		fibres / vapours /	residents	•	Inhalation of ground	•	Yes	As above	Potential risk	ТВА	ТВА
Various factories and		gases by	during		gas						
including Penmaen Industrial Estate.		proposed development	construction	•	Inhalation of radon gas	•	No	Lower & Intermediate Probability Area	Moderate risk	Basic Radon Protection Measures	Low
Scrap Yard & Car Breakers / Dismantlers				•	Ingestion via permeated water	٠	Yes	As above	Potential risk	TBA	TBA
Former railway line		Dermostien of			supply pipework						
Old Quarry		water supply		٠	Direct contact with	٠	Yes	As above	Potential risk	ТВА	TBA
		pipework			Secondary (Undifferentiated)						
					Aquifer in						
				ļ	Superficial Deposits						
		Leachate	Secondary	•	In-direct contact	•	Yes	As above	Potential risk	ТВА	ТВА
			Aquilers		Aguifer in bedrock						
			Sirhowy River								

Table 1: Outline Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

3 SITE WALKOVER

The opportunity was taken to inspect the proposed Lidl store site on 21st October 2024 by Usamah Khan of Remada Ltd during the intrusive works, as recorded in the photographs below.

Photo 1: A view north showing the existing bus depot, taken from the centre of the proposed store.

Photo 2: A view towards the eastern boundary of the site, which is marked by the trees in the back of the photo. The sloping from the north to the south is evident from the left of the photo to the right.

Photo 3: Photograph displaying the rear of the bus depot, where a body shop is located, in the northernmost section of the site, view looking west (taken from the centre of the northern section of the site).

Photo 4: A view eastward of the bus depot, photograph taken from the entrance of the bus depot (located along the south wall of the depot).

4 ENVIRONMENTAL & GEOTECHNICAL INVESTIGATION METHODOLOGY

4.1 Investigation Strategy

In accordance with Lidl Ground Investigation standard 05.2023, five (5 No). window sample holes were required beneath the proposed store footprint to a depth of 7m or refusal, and four (4 No) beneath the delivery bay, HGV access and car park. Four (4 No) CBR tests were conducted in the proposed car park. Four (4 No) ground gas monitoring visits were scheduled for the site to provide the minimum required by C665.

The investigation comprised drilling thirteen (13 No) window sample holes (WS1 – WS9 and WS03A, WS06A, WS08A and WS09A) and executing four (4 No) CBR tests at locations indicated in **Figure 2** between the 21st and 22nd of October 2024.

Remada was also instructed to undertake three (3 No.) rotary open-holed boreholes (RBH01-O3) to a target depth of 30m bgl, in order to investigate the potential coal mining legacy beneath the site. The findings of this rotary investigation, undertaken between 19th and 26th November 2024, have been incorporated into this Phase 2 report.

All exploratory holes were logged by a suitably qualified Geo-environmental Engineer in general accordance with the recommendations of BS5930:2015+A1:2020. Detailed descriptions, together with relevant comments, are given in the **Exploratory Hole Logs**.

4.2 Intrusive Investigation

4.2.1 Window Sampling

Five of the window sample boreholes targeting the proposed store footprint were advanced to a target depth of 7m bgl and four targeting the proposed car park to a target depth of 5m bgl. However, due to shallow refusals (SPT N-value >50) encountered across the site, the boreholes were advanced to depths of between 0.42m and 3.0m bgl. Four additional boreholes (WSO3A, WSO6A, WSO8A and WSO9A) were undertaken where shallow obstructions were encountered.

4.2.2 Rotary Boreholes

All three rotary open holes (RBH1 – RBH3) were drilled to depths of 30m below existing ground level between Tuesday 19th November and Tuesday 26th November 2024, in order to investigate the potential of worked seams.

4.3 In-Situ Testing

4.3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) in the window samples were carried out at 1.0m intervals as recorded on the borehole logs to assess the relative density and consistency of soils.

SPTs were conducted in accordance with BS EN ISO 22476-3 and the recorded SPT N-values are summarised on the borehole logs.

The SPT N-values have been corrected based on the Energy Ratio of 73% for the SPT hammer on the window sampling rig. The SPT Hammer Energy Test Report, undertaken in accordance with BS EN ISO 22476-3:2005, is presented in **Appendix A**.

4.3.2 Dynamic Cone Penetrometer (DCP) Tests

Four (4 No.) DCP tests were conducted in order to determine California Bearing Ratio (CBR) values for near-surface soils at the locations in **Figure 2**. A known mass is dropped through a known distance to

drive a cone into the ground. The penetration distance per blow is recorded in order to enable the CBR value to be calculated. Test results are presented in **Appendix B**.

4.4 Soil Sampling

4.4.1 Environmental

Made ground and natural soils were selected by visual and olfactory means for subsequent analysis. Samples for chemical laboratory testing purposes were collected in amber glass jars, amber glass vials and plastic tubs and retained in a cool box for transport to the laboratory.

4.4.2 Geotechnical

Geotechnical samples were collected at depths indicated on the window sample logs, and samples were retrieved from within a sleeve line. The disturbed samples were placed in sealed and correctly labelled plastic tubs or bags as appropriate. All geotechnical samples were dispatched to the laboratory for testing with a completed chain of custody.

4.5 Gas & Groundwater

4.5.1 Installations

Combined ground gas and groundwater monitoring standpipes were installed in selected wells with a 50mm diameter slotted HDPE pipe and packed with gravel surround as recorded on the exploratory logs. Wells were completed with 0.5 - 1.5m of plain HDPE pipe and bentonite seal, with a gas bung and tap installed at the top of the pipe.

4.5.2 Monitoring

Ground gas monitoring was undertaken using a GasData GFM436 gas analyser for the parameters reported below. Groundwater levels were measured with a dip meter probe.

Permanent ground gas monitoring involved the measurement of the following in the prescribed order:

- Pressure difference between the monitoring well and the atmosphere,
- Peak and steady flow rates of gas into or out of the monitoring well;
- Peak and steady concentrations of carbon dioxide, methane, oxygen (minimum and steady recorded), carbon monoxide, hydrogen sulphide; and
- Depth to groundwater.

Four ground gas monitoring visits were undertaken as a minimum required for a commercial development in accordance with CIRIA C665. Ground gas concentrations were recorded on 30th October and 4th, 11th and 18th November 2024 at WS3a, WS5 and WS6 and the results are presented in **Table 2**.

4.6 Quality Assurance and Quality Control

All samples were submitted to a United Kingdom Accredited Laboratory (UKAS) under a completed chain of custody. The laboratory carried out its own QA/QC programme to ensure that the quality of the analytical data conformed to the appropriate test method protocols.

4.7 Laboratory Analysis & Testing

4.7.1 Chemical Analysis – Soil

Five (5 No) soil samples were scheduled for the analysis of asbestos, arsenic, barium, beryllium, cadmium, chromium (III & VI), copper, mercury, nickel, lead, selenium, zinc, fraction of organic carbon, Total Petroleum Hydrocarbons (TPHCWG), Polyaromatic Hydrocarbons (PAH), BTEX compounds

(benzene, toluene, ethylbenzene and xylene) and phenols. Three (3 No) additional samples were scheduled for TPHCWG and BTEX compounds only.

During the rotary investigation strong hydrocarbon odours were noted within RBHO3, within the sands and gravels. Consequently, two (2 No) additional samples were taken from the sand and gravels and from the underlying bedrock and were scheduled for TPHCWG and BTEX compounds only.

Three (3 No) soil samples were scheduled for Waste Acceptance Criteria (WAC) testing in order to determine the appropriate landfill for any potential off-site disposal.

In addition, two samples of bituminous surfacing were analysed for PAH compounds.

The results of laboratory chemical analyses are presented in **Appendix C**.

4.7.2 Geotechnical

Samples recovered from the boreholes were submitted to an accredited laboratory for the following tests in general accordance with BS1377:1990:

- 5 No Natural Moisture Contents
- 5 No Plasticity Indices
- 3 No Particle Size Distribution tests; and
- 5 No BRE SD1 suites

The results of the geotechnical testing are presented in **Appendix D**.

5 GEOTECHNICAL & ENVIRONMENTAL INVESTIGATION FINDINGS

5.1 Ground Conditions

A brief description of the published geology is provided together with a summary of the ground conditions encountered during the intrusive investigation. Exploratory hole logs are presented at the end of the report.

5.1.1 Published Geology

Information from the environmental report and the British Geological Survey (BGS) 1:50,000 scale map Sheet 249 (Newport) does not indicate any artificial ground either on or in the immediate vicinity of the study site. Artificial Ground is a term used by the BGS for those areas where the ground surface has been significantly modified by human activity, and includes made ground, worked ground, infilled ground, landscaped ground and disturbed ground. It is not expected to be encountered according to the mapping; however, taking consideration of the site's historic use and satellite imagery it is likely that made ground will be encountered underlying the site.

The superficial deposits underlying the site are indicated to comprise Devensian Till (Diamicton) deposits, which typically comprise '*sand and gravel with rare clay interbeds*'.

The bedrock underlying the superficial deposits is formed of the Grovesend Formation. The BGS describes the stratum as typically comprising 'predominantly argillaceous, comprising mudstones and siltstones, with well-developed coals; minor lithic ("Pennant") sandstones; locally developed red mudstones in the type area.'

BGS map Sheet 249 dated 1986 indicates that the site is bisected by a WNW-ESE orientated fault in the northern area, which downthrows towards the south. The BGS mapping also shows a NE-SW orientated fault joining this WNW-ESE fault on-site, downthrowing towards the north-west. However, the Envirocheck report obtained for the study site as part of Remada's Phase 1 report indicates this to be present immediately to the north of the site and joining the WNW-ESE fault adjacent to the north-western corner.

5.1.2 Made Ground

Made Ground was encountered within all of Remada's window sample boreholes to a maximum depth of 2.3m bgl (WS8A) in the south-western area of the site.

Concrete hardstanding was encountered in five (5 No.) boreholes (WS1 to WS3, WS3a and WS4) ranging in depths between 0.16m (WS3) and 0.23m bgl (WS5), with an average thickness of 0.21m.

Asphalt surfacing was encountered in six (6 No.) boreholes (WS5, WS6, WS6A and WS7 to WS9) ranging in depths between 0.08m (WS5) and 0.12m bgl (WS8), with an average thickness of 0.1m.

Topsoil was encountered within one location (WS8A), comprising dark brown sandy silt with frequent rootlets to a depth of 0.16m bgl. Hardstanding was absent in one other window sample borehole (WS9A adjacent to the southern boundary) and comprised firm slightly gravelly sandy clay to a depth of 0.85m bgl.

Below the hardstanding and topsoil, the Made Ground was variably described as a gravelly, slightly clayey SAND, a slightly gravelly sandy CLAY or sandy GRAVEL. Gravel was recorded as comprising concrete, brick, plastic, mudstone, sandstone, coal and quartzite.

5.1.3 Superficial Deposits

Superficial deposits were encountered within exploratory holes WS01, WS02, WS03A, WS04, WS07, WS08A and WS09A, comprising a soft to firm sandy to very sandy locally gravelly CLAY. Gravel was recorded as comprising sandstone, mudstone and coal. Superficial deposits were encountered to a maximum depth of 2.0m bgl (WS04).

5.1.4 Bedrock

No bedrock was positively identified during Remada's window sampling investigation.

5.1.5 Rotary Findings

A summary of the rotary findings in each borehole is provided below:

<u>RBH1</u>

RBH1 was bored in the north-western area of the proposed store footprint. Made Ground was encountered from ground level to 2.7m bgl (140.67m AOD). Below the Made Ground, superficial SAND and GRAVEL deposits were encountered to a depth of 11m bgl (132.37m AOD). Rockhead was interpreted from the rate of drilling as intermitted bands of MUDSTONE and SILTSTONE to the base of the borehole 30m bgl (113.37m AOD). No loss of flush or evidence of coal was recorded.

<u>RBH2</u>

RBH2 was bored in the western area of the proposed store footprint. Made Ground was recorded from ground level to 3.0m bgl (140.69m AOD). Below the Made Ground, superficial SAND and GRAVEL deposits were encountered to a depth of 11.0m bgl (134.69m AOD). Rockhead was interpreted from the rate of drilling as intermitted bands of MUDSTONE and SILTSTONE to the base of the borehole 30m bgl (113.69m AOD). No loss of flush or evidence of coal was recorded

<u>RBH3</u>

RBH3 was bored in the southern area of the proposed store footprint. Made Ground was encountered from ground level to 3.0m bgl (137.54m AOD). Below the Made Ground, superficial SAND and GRAVEL deposits were encountered to a depth of 7.6m bgl (132.96m AOD). Rockhead was interpreted from the rate of drilling as intermitted bands of MUDSTONE and SILTSTONE to the base of the borehole 30m bgl (110.54m AOD). No loss of flush or evidence of coal was recorded.

5.2 In-situ Testing

5.2.1 Standard Penetration Tests (SPTs)

In-situ SPTs were undertaken to assist with the interpretation of the strata encountered. The results of corrected N-values versus depth are plotted in the graph below. Where the corrected N6O value >100, a value of 100 has been plotted.

Graph 1: Plot of Corrected SPT N-Values Versus Depth

Note: Corrected N value plotted at a maximum of N = 100.

Undrained shear strengths have been estimated from SPT N values using the relationship developed by Stroud (*The standard penetration test in incentive clays and soft rocks*) and summarised in Tomlinson where:

Mass shear strength = $f_1 \times N$

Where $f_1 \mbox{ is based on the plasticity index.} \label{eq:constraint}$

A Plasticity Index of 24% has been assumed (based on geotechnical laboratory testing), which equates to an f1 factor of 5.0.

Graph 2: Plot of Mass Shear Strength Versus Depth

Note: Corrected Shear Strength plotted at a maximum of 350 KPa.

5.2.2 CBR Tests

The results of the four DCP tests within the proposed car park area produced values of between 4.1 and >100% within the upper 500mm. The results of the DCP tests are presented in **Appendix C**.

5.3 Soil Observations

Made Ground was recovered at all locations containing various man-made materials including brick, concrete, coal, mudstone, sandstone, asphalt and quartzite.

Hydocarbon odours were noted within the recovered soils from five (5 No.) exploratory hole locations (WS5, WS6, WS6A, WS7 and RBH3), whilst a solvent odour was recorded in the shallow made ground in WS8.

5.4 Groundwater Observations

No groundwater was observed within any of the boreholes during the intrusive investigation. During the monitoring period, water was found within WS05 at 1.52m bgl (142.56m AOD) and 1.53m bgl (142.55m AOD).

5.5 Chemical Analysis

The soil chemical analysis results are presented in **Table 3** and summarised as follows.

The average Fraction of Organic Carbon (FOC) and pH were 0.01 and 8.3 respectively. Asbestos was not detected in the samples analysed. Detectable concentrations of metals were identified, although these are generally within the range that would typically be expected for made ground.

Total Petroleum Hydrocarbons (TPH) concentrations were detected above the method detection limit (MDL) in seven of the samples analysed (with the exception of RBHO3 at 8.0m). The hydrocarbons were generally heavy-end hydrocarbons within the C21 to C35 range, although concentrations in the C12 to C16 range were noted in WSO3A, WSO5 and WSO7, the C10 to C12 range in the sample from WSO1, the C8 to C10 range were noted in WSO1, WSO4, WSO6 and WSO8, hydrocarbons within the C5-C10 range, as well as Ethylbenzene and M and P Xylene were noted within RBHO3 at 3.00m. The maximum TPH concentration recorded was 206 mg/kg recorded within WSO7 at 0.25m bgl.

A summary of the TPH olfactory evidence and the subsequent soil analysis is presented in **Table 4** below:

Location	Depth	Strata Type	Olfactory Evidence	Soil Analysis		
	(m bgl)			Sample Depth (m bgl)	TPH Concentration (mg/kg)	
	0.08 – 0.60	MADE GROUND	Hydrocarbon odour	0.35	23	
000	1.65 – 2.00	MADE GROUND	Slight hydrocarbon odour	1.80	20	
WS6	0.11 – 0.40	MADE GROUND	Hydrocarbon odour	0.15	43	
WS6A	0.1 – 0.35	MADE GROUND	Hydrocarbon odour	-	-	
WS7	0.10 – 0.40	MADE GROUND	Hydrocarbon odour	0.25	206	
WS8	0.12 – 0.32	MADE GROUND	Solvent odour	0.20	41	
כווסס	3.0 – 7.60	SAND & GRAVEL	Hydrocarbon odour	3.00	<20	
КОПЭ	7.60 – 30.0	MUDSTONE	None	8.00	<20	

Table 4: Summary of TPH Soil Analysis

Concentrations of Polyaromatic Hydrocarbons (PAHs) were recorded above MDL in four of the five samples analysed, with a maximum concentration of 15.1 mg/kg recorded in WS8 at 0.2m bgl. In addition, the PAH concentrations have been plotted on a double ratio plot to provide an indication of the likely source of the PAHs. All of the samples that had detections of the four PAHs used have been

plotted, and all are indicated to be combustion or pyrogenic-related PAHs, which could be associated with urban background sources.

Graph 3: PAH Double Ratio Plot

The concentrations of PAH-17 within the asphalt samples recovered from WSO5 and WSO6 were recorded at 9.81 mg/kg and 30 mg/kg respectively.

5.6 Geotechnical Testing

The results of the geotechnical testing are summarised below.

5.6.1 Plasticity Testing

Plasticity testing was undertaken on five (5 No.) samples of cohesive soils recovered from the window sample boreholes, with the results ranging between 16% and 39%. These indicate the soils to be of both intermediate plasticity (CI/MI) and high (CH) plasticity, and low to medium volume change potential as summarised in **Table 5** below:

Location	Depth (m)	Plasticity Index (%)	Passing .425mm (%)	Modified Plasticity Index	Volume Change Potential
WS03A	1.30	26	100	26	Medium
WS03A	1.80	16	100	16	Low
WS04	1.10	27	100	27	Medium
WS07	0.95	13	100	13	Low
WS08A	2.50	39	75	29	Medium

 Table 5: Plasticity Indices and Volume Change Potentials of the Cohesive Strata

5.6.2 Particle Size Distribution (PSD) Analysis

The PSD tests revealed the following:

• Made Ground in WSO3A at 0.22 - 1.30m comprised 'brown silty/clayey sandy GRAVEL'.

- Made Ground in WSO6 at 0.60 1.00m comprised 'brown silty/clayey sandy GRAVEL'.
- Natural deposits in WSO9A at 1.10 1.80m comprised 'gravelly sandy SILT/CLAY'.

5.6.3 BRE SD1 Analysis

The water-soluble sulphate contents varied from 11 to 420 mg/l in the five soil samples analysed, with pH varying from 4.0 to 6.9. The total sulphur content varied from <0.01 to 0.24% and acid-soluble sulphate varied from <0.01 to 0.30%.

5.7 Ground Gas Monitoring Results

The results of the ground gas and groundwater monitoring programme are summarised below:

- The steady-state concentrations of Methane were recorded at less than the instrument detection limit of 0.1% v/v in all three standpipes throughout the monitoring programme.
- A maximum steady-state concentration of Carbon Dioxide was recorded as 5.8% v/v in WSO6 on 30th October 2024. Detectable concentrations of carbon dioxide were recorded in all the monitoring wells.
- A minimum steady-state concentration of Oxygen was recorded as 12.0 % v/v in WS06 on 30th October 2024.
- Ground gas flow rates were recorded at less than the instrument detection limits (i.e. <0.1 l/hr) throughout the monitoring programme.
- Standing water was encountered within WS5 during the third and fourth monitoring visits only; recorded at depths of 1.52m and 1.53m bgl respectively.
- Atmospheric pressure at the time of sampling varied between a high of 1015 millibar (mbar) on 11 November 2024 and a low of 991 mbar on 18 November 2024. The monitoring visits were undertaken during periods of rising and falling pressure trends over the preceding forty-eight hours.

6 GENERIC QUANTITATIVE RISK ASSESSMENT

6.1 Human Health Risk Assessment

To provide an up-to-date assessment of the risks to human health, Remada has adopted the most recent Generic Assessment Criteria (GAC) published by LQM/CIEH (S4ULs) and CL:AIRE/EIC/AGS. The derivation of GAC, methodology, input parameters, and technical guidance (CLEA) may be obtained upon request.

The proposed site layout retail store and car park is presented in **Figure 3**.

Default parameters have been adopted for sandy loam of pH 7 and commercial land use. Fraction of Organic Carbon (FOC) ranged from 0.0072 to 0.017, giving a Soil Organic Matter (SOM) content between 1.24 and 2.93%, with an average result of 1.93%. In order to present a conservative assessment, the SOM content of 1% has been adopted.

The depth to potential sources of contamination for indoor air pathways has been assumed to be 0.5m below the building foundation level. The source has been conservatively assumed to be at ground level for outdoor air and direct contact pathways.

For commercial land use, the CLEA version 1.06 critical receptor is conservatively modelled as a female working adult with an exposure duration of 49 years. In accordance with the default parameters, it was assumed that employees spend most of their time indoors and that 80% of the outdoor area is covered by hardstanding. As such, the potential exposure pathways have been assumed to be:

- Direct Soil and Indoor Dust Ingestion;
- Skin contact with soils and dusts;
- Inhalation of indoor and outdoor dusts and vapours.

Where GAC values for individual TPH fractions are not exceeded, the potential additive effect has been assessed by calculating each sample's overall TPH hazard index.

6.2 Comparison of Soil Analysis Results with Human Health GAC

A comparison of soil chemical analysis with GAC is presented in **Table 3**.

<u>TPH, PAH & BTEX</u>

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

Metals & Inorganics Excluding Asbestos

None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

<u>Asbestos</u>

No asbestos was detected in the samples selected for analysis.

6.3 Controlled Waters Risk Assessment

6.3.1 Sensitivity – Groundwater

The site is not indicated to be within a Groundwater Source Protection Zone. The superficial Devensian Till Deposits underlying the site are designated as a Secondary Undifferentiated Aquifer, where it is impossible to designate it as 'A' or 'B'. The Grovesend Formation bedrock underlying the site is designated as a Secondary 'A' Aquifer. No groundwater abstractions were recorded within 1km of the site.

6.3.2 Sensitivity – Surface Waters

The nearest surface water feature is recorded 36m east of the study site as a pond. The nearest named watercourse is the Sirhowy River, located 154m to the west at Its nearest point, which flows in a generally southerly direction.

6.3.3 Risk Assessment

The results of the soil chemical analysis undertaken have identified that concentrations of metals and inorganic contaminants are within the range that would be expected for 'typical' made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and, as such, are unlikely to present a risk to groundwater beneath the site.

Post-development, the site will continue to be predominantly covered by buildings and hardstanding areas. Consequently, the risk of contaminants leaching as a result of groundwater infiltration is limited. Therefore, the risk to controlled waters from contaminants within the made ground at the site is considered to be low and does not warrant further consideration at this stage.

6.4 Ground Gas Assessment

In order to understand the gassing regime at the site, a Characteristic Situation (as defined in CIRIA C665 and BS8576:2013) is determined for the site. CIRIA C665 and BS8576 provides definitions for each Characteristic Situation based on Gas Screening Values (GSV), which are calculated as follows:

• GSV = Measured Borehole Flow Rate $(l/hr) \times Gas$ Concentration/100 (% v/v)

BS8576 makes a distinction between the GSV and the Hazardous Gas Flow Rate (Q_{hg}) which is also calculated using the above calculation. BS8576 states that Q_{hg} is calculated for each individual borehole for each monitoring visit, whereas the GSV is taken as the representative value for the site or site zone.

As a worst-case assessment, the GSV for the site is therefore taken as the maximum steady-state carbon dioxide/methane concentration recorded in the boreholes, multiplied by the maximum flow rate recorded during the same monitoring event.

- Methane GSV = (0.1%/100) x 0.1 l/hr = 0.0001 l/hr (methane concentration taken as equal to the instrument detection limit of 0.1% and flow taken as equal to the instrument detection limit of 0.1 l/hr)).
- Carbon Dioxide GSV = (5.8%/100) x 0.1 l/hr = 0.0058 l/hr

The calculated GSV of less than 0.07 l/hr for methane and carbon dioxide places the site into Characteristic Situation 1. BS 8485:2015+A1:2019 states that for Characteristic Situation 1, the methane concentration would typically be less than 1% and carbon dioxide less than 5% and that if concentrations are above these limits, then consideration should be given to placing the site into Characteristic Situation 2. As the concentrations of methane and carbon dioxide were both within these typical limits, the Characteristic Situation 1 classification is appropriate for the site.

The site is located in both a Lower Probability Radon Area (less than 1% of homes are estimated to be at or above the action level) and an Intermediate Probability Radon Area (5 to 10% of homes are estimated to be at or above the action level). Consequently, basic radon protective measures are considered necessary within the structural design of the proposed development.

6.5 Revised Conceptual Site Model

A revised Conceptual Site Model is presented in **Table 6** below.

6.6 Waste Classification & Waste Acceptance

Waste classification has been undertaken following the guidance set out in WM3 EA Technical Guidance 'Guidance on the classification and assessment of waste', 1st Edition, Version 1.2GB, October 2021. The results of this assessment determine the appropriate List of Waste (LoW) Code and whether the waste should be classified as hazardous or non-hazardous. Classification is undertaken using the results of solid (total) analyses and not on the results of the WAC analyses.

Once the waste has been classified as either hazardous or non-hazardous, the WAC testing determines if the waste meets the requirements for disposal in the required landfill. Therefore, if the waste is classified as hazardous waste, it would also need to meet the hazardous waste WAC requirements to be disposed of in a hazardous waste landfill. However, if the final destination of the waste is not to landfill, then WAC analysis is not required.

The WAC testing also allows for a distinction to be made between inert and non-hazardous waste. Waste that does not fall within the hazardous waste category and meets the requirements for disposal in an inert landfill can, therefore, be disposed of in an inert landfill. However, waste that does not meet the requirements for an inert landfill will need to be disposed of in a non-hazardous landfill. In certain circumstances, hazardous waste can be disposed of in a designated cell within a non-hazardous landfill. In this case, the waste would need to meet more stringent leachate requirements for stable, non-reactive hazardous waste.

6.6.1 Waste Classification

<u>Soils</u>

The results of the assessment indicated that contaminant concentrations within the made ground, topsoil and natural soils were generally low and would classify the soils as non-hazardous with LoW Code 17 05 04 (soils and stones other than those mentioned in 17 05 03).

Asphalt Surfacing

Two (2 No.) asphalt samples were scheduled for PAH-17 analysis. The benzo(a)pyrene concentration was low (maximum value 5.7 mg/kg), below the 50 mg/kg limit defined in WM3. Therefore, the bituminous surfacing represented by these samples would be classified as non-hazardous waste and assigned the List of Wastes code 17 O3 O2 for bituminous mixtures other than those mentioned in 17 O3 O1.

6.6.2 Waste Acceptance

Three samples of Made Ground were analysed using Waste Acceptance Criteria (WAC). The assessment indicated that all samples met the requirements for disposal in an inert landfill.

The final disposal classification should be confirmed by the receiving site operator.

6.7 Health & Safety Considerations

To minimise the direct exposure of construction workers involved in the site redevelopment to any impacted contaminated shallow soils, the guidance stated in HSG 66, "Protection of Workers and the General Public During Redevelopment of Contaminated Land," should be followed.

Phase 2 Ground Investigation Stagecoach Depot, Pemaem Road, Blackwood

1271.03.01, December 2024

Potential Source Areas	Potential Contaminant of	Pathways	Potential Receptor	Exposure Route (Human unless otherwise	Potential Identified	Findings of Ground	Risk (Un-	Proposed Remediation	Residual Risk Estimation
	Concern			stated)	(unmitigated)	Investigation	mitigated)	Measures	
<u>On-site Sources</u>				Direct Soil Ingestion	N/A	N/A	N/A	N/A	N/A
General Made Ground		Disturbance due to construction plant		Indoor Dust ingestion	• Yes	No exceedance of GAC.	Very Low	Hardstanding to cover retail site	Negligible
Furniture Factory		causing direct						contact.	
Council Depot		contact, dusts,	Occupants of	Skin Contact with Soils	• Yes	As above	Very Low	As above	Negligible
Bus Depot & Tanks	Asbestos /	vapours.	the	Skin Contact with Dust	• Yes	As above	Very Low	As above	Negligible
Electricity sub- station	Metals As, Be, Cd, Cu, Cr (VI), Cr (III)	Direct Contact with	development / building	 Inhalation of Outdoor Dust 	• Yes	As above	Very Low	As above	Negligible
<u>Off-site Sources</u>	Hg, Ni, Se, Va, Zn, Boron, TPH /PAH,	occupants of the proposed	fabric	 Inhalation of Outdoor Vapours 	• Yes	As above	Very Low	As above	Negligible
General Made	PCBs	development		 Inhalation of Indoor Vapours 	• Yes	As above	Very Low	As above	Negligible
Ground		Inhalation of fibres	A dia any t	Inhalation of ground gas	• Yes	CS1	Negligible	None	Negligible
Electricity sub- stations		by occupants of	residents						
Residential properties		proposed development	during construction	 Inhalation of radon gas 	• Yes	Intermediate Probability Radon Area	Low	Basic Radon Protection Membrane	Negligible
Various factories and industrial units, including Penmaen		Permeation of		 Ingestion via permeated water supply pipework 	• Yes	No exceedance of GAC.	Low	None	Low
Industrial Estate. Scrap Yard & Car Breakers /		water supply pipework	Secondary Aquifers	Direct contact with Secondary (Undifferentiated) Aguifar in Superficial	• Yes	Concentrations within typical range of made	Low	Hardstanding to prevent precipitation	Negligible
Dismantlers			Rover	Aquirer in Superficial Deposits		grounu (< GAC)		leaching.	
Former railway line				 In-direct contact with 				0	
Old Quarry				Secondary (A) Aquifer in bedrock					

Table 6: Refined Conceptual Site Model

Direct contact with subsurface soil and/or groundwater during redevelopment works are not assessed as part of the CSM. It is considered that risks to workers will be managed as part of any the redevelopment works at the site through the application of health and safety procedures, where required.

7 GEOTECHNICAL SITE ASSESSMENT: LIDL STORE

7.1 Geotechnical Considerations

An indicative site layout has been made available to Remada, illustrating the proposed store footprint to be located within the western area of the site. The majority of the central and southern area of this footprint is located within existing hardstanding (bus parking), whilst the northern area is located beneath part of the existing bus depot building. The store's proposed delivery ramp would be located adjacent to the south-western boundary. The remaining areas of the site would be occupied by car parking, HGV access and soft landscaping. An electricity sub-station is indicated to be positioned in the north-western corner.

This report should be read in conjunction with Remada's Coal Mining Risk Assessment 1271.02.02.

The site gently slopes downwards from north to south, with the topographic elevation varying between approximately 144m AOD (metres above ordnance datum) on the northern boundary and 140m AOD in the south-western corner. At the time of writing, the store's finished floor level (FFL) is unknown, although it is anticipated to be similar to the existing level in the south-western area of circa. 143m AOD.

Ten (10 No.) of Remada's exploratory holes (WS3, WS3A, WS4, WS6, WS6A, WS8, WS9 and RBH1 – RBH3) were positioned in the proposed store footprint, as indicated in **Figure 2**. Within the seven (7 No.) window sample boreholes, the made ground appeared to be relatively shallow and present to a maximum thickness of 1.3m (WS3A) where proven (see rotary logs below). However, this belies the shallow SPT refusals encountered within the majority of these window sample boreholes (WS3, WS6A, WS6A, WS8 and WS9) at depths \leq 1m bgl. In the two locations where the window sample borehole advanced into strata devoid of anthropogenic material (WS3A and WS9A), this material was recorded as soft to stiff locally gravelly sandy CLAY to the base of the boreholes at 2.6m and 2.0m bgl respectively.

Within the three rotary boreholes, the made ground was recorded to depths of between 2.7m and 3.0m bgl and underlain by superficial SAND & GRAVEL deposits. However, due to the open-holing nature of this drilling technique, it is usually difficult to detect a change in strata, unless there is a good contrast in properties such as colour, mineral content or hardness. Consequently, there is some uncertainty as to the current thickness of made ground across the study site at the present time.

The rotary boreholes recorded MUDSTONE and SILTSTONE at depths of between 7.6m and 11.0m bgl, which were interpreted as representative of the Grovesend Formation bedrock indicated on published geological mapping.

No groundwater was observed within any of the window sample boreholes during the intrusive investigation. The required use of water-flush as a rotary drilling medium masked any potential groundwater strikes within the deeper rotary boreholes on-site. Perched groundwater was encountered within the made ground at 1.52m bgl (142.56m AOD) and 1.53m bgl (142.55m AOD) in WS5, although this was only present during the third and fourth monitoring visits only.

Details of the proposed permanent and variable design loads (actions) are not currently known although an indicative column load of 400kN has been provided.

7.2 Foundations

The thickness of the made ground beneath the proposed store footprint is anticipated to be circa. 2.5 to 3.0m based on the intrusive investigations to date. Due to buried obstructions in the made ground,

(indicated in \leq 1m refusals in five of the seven window samples targeting the proposed store footprint), made ground should be excavated and recompacted as graded fill.

Vibro-stone columns bearing in the natural SAND & GRAVEL deposits at depths of circa 3.0 – 5.0m bgl are considered a potential foundation solution, providing a minimum bearing capacity for either a raft or pad & strip foundation for a ground-bearing floor slab, as specified by the Structural Engineer. The strength, depth and composition of these SAND & GRAVEL deposits is unknown at the time of writing.

7.3 Shrinkage and Swelling

All CLAY samples were reported as having INTERMEDIATE and HIGH plasticity, with between 75% and 100% passing a 0.425mm sieve. The modified plasticity index equates to Low to Medium Volume Change Potential.

BRE 412 states that where the natural moisture content is less than 0.4 times the Liquid Limit (w < 0.4 wL) it is indicative of desiccation. Soil desiccation has potentially occurred at WS08A @ 2.50m.

The minimum foundation depths outside the zone of tree influence as specified by the NHBC have been reproduced in **Table 7** below, however:

Volume Change Potential	A) Minimum foundation depth (m) (allowing for restricted new planting)	 B) Minimum foundation depth (m) (where planting is outside the zone of influence of trees)
High	1.50	1.0
Medium	1.25	0.9
Low	0.9	0.75

Table 7: NHBC 2023 Table 4 Minimum Foundation Depths

7.4 Floor Slab

If pad foundations are selected as described above, then a layer of compacted $6F_2$ capping overlying the existing but re-compacted made ground to a minimum specified bearing capacity is considered to be suitable beneath a ground bearing floor slab.

7.5 Imported Fill

Any imported fill material should comply with an earthworks specification to be prepared by the engineer and not contain concentrations of contaminants greater than the Generic Assessment Criteria (GAC) presented in **Table 3**.

7.6 Excavations and Temporary Works

Excavation side walls may not be stable even in the short term without support or without being battered back to a safe slope gradient. A detailed inspection of the side slopes should be made during excavation and a risk assessment carried out to fully assess the support measures required.

No groundwater was observed within any of the boreholes during the intrusive investigation. During the monitoring period, water was found within WSO5 at between 1.52m bgl and 1.53m bgl.

7.7 External Car Park Construction

CBR values estimated from the DCP tests indicated that, near the surface, the CBR values were variable, with several values of <10% recorded. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced

in compacted layers in accordance with an engineering specification.

7.8 Protection of Buried Concrete

In accordance with BRE SD1 for buried concrete in a brownfield site with mobile groundwater, analysis of selected samples for water-soluble sulphate returned values of up to 420 mg/l and pH <6.9. A total potential sulphate value of 0.72% was also calculated from the total sulphur results. Therefore, a Design Sulphate Class DS-2 is considered appropriate for buried concrete, and an ACEC Class of AC-3s is considered appropriate for the location.

7.9 General Construction Advice

All formations should be cleaned and inspected by a suitably qualified engineer before concrete is placed. Should any soft, compressible or otherwise unsuitable materials be encountered they should be removed and replaced by blinding concrete.

Foundation concrete, or alternatively, a blinding layer of concrete, should be placed immediately after excavation and inspection in order to protect the formation against softening and disturbance.

Generally, all formations should be placed wholly within the same material type unless specific geotechnical inspection and assessment have been undertaken.

Where applicable, ground beneath the proposed building footprint and potentially car parking may require to be stripped to reveal localised areas of made ground and structures. Excavations should be backfilled with suitably re-compacted materials to achieve formation level.

During foundation excavation works, arisings should be constantly monitored for the presence of contamination.

Remada's intrusive investigation has identified the potential for buried obstructions within the made ground underlying the site, which are of unknown size and composition at the time of writing.

8 CONCLUSIONS & RECOMMENDATIONS

8.1 Conclusions

The following conclusions have been made based on the findings of this investigation.

8.1.1 Phase 2 Site Investigation

The site occupies an approximately rectangular plot in the north-eastern area of the Penmaen Industrial Estate, situated to the west of Penmaen Road and south of the B4254 road. At the time of writing, the site comprises a Stagecoach bus depot, with associated bus stabling and servicing facilities.

The earliest available historical mapping of 1879 shows the site to be divided into two fields extending off-site to the north, south and west. Except for the removal of one of two footpaths bisecting the site, the site remains unchanged until after the mapping of 1938. By 1953, the northern and central areas of the site have been redeveloped, with a large 'Furniture Factory' occupying these areas. By 1971, the present-day electricity substation had been installed in the north-western corner of the site. Between 1975 and 1986, the site became occupied by a 'Council Depot', with the southern area of the site being redeveloped from a heathland to hardstanding around this time.

Made Ground was encountered within all of Remada's window sample boreholes to a maximum depth of 2.3m bgl (WS8A) in the south-western area of the site. Within the proposed Lidl store footprint, the made ground appeared to be relatively shallow and present to a maximum thickness of 1.3m (WS3A) where proven. However, this belies the shallow SPT refusals encountered within the majority of these window sample boreholes at depths ≤1m bgl. In the two locations where the window sample borehole advanced into strata devoid of anthropogenic material (WS3A and WS9A), this material was recorded as soft to stiff locally gravelly sandy CLAY to the base of the boreholes at 2.6m and 2.0m bgl respectively.

Within the three rotary boreholes, the made ground was recorded to depths of between 2.7m and 3.0m bgl and underlain by superficial SAND & GRAVEL deposits. However, due to the open-holing nature of this drilling technique, it is usually difficult to detect a change in strata, unless there is a good contrast in properties such as colour, mineral content or hardness. Consequently, there is some uncertainty as to the current thickness of made ground across the study site at the present time.

The rotary boreholes recorded MUDSTONE and SILTSTONE at depths of between 7.6m and 11.0m bgl, which were interpreted as representative of the Grovesend Formation bedrock indicated on published geological mapping.

8.1.2 Human Health Risk Assessment

The results of soil chemical analysis were compared to the Human Health Generic Assessment Criteria for commercial land use. None of the analytes tested were detected at concentrations that exceeded the human health GAC protective of on-site workers.

8.1.3 Water Resources Risk Assessment

The results of the soil chemical analysis undertaken have identified that concentrations of metals and inorganic contaminants are within the range of typical made ground. Detectable concentrations of TPH and PAHs were encountered in some samples. However, the contaminants identified are of low solubility and mobility and, as such, are unlikely to present a risk to groundwater beneath the site. In addition, it should be noted that the site will be predominantly covered with the building and areas of hardstanding. Therefore, the risk of leaching of contaminants as a result of infiltration of groundwater is likely to be limited. Therefore, the risk to groundwater from contaminants within the made ground at the site is considered to be low and does not warrant further consideration.

8.1.4 Waste Classification

In general, the results of the chemical analysis indicate that the material would be classified as non-hazardous waste. Waste Acceptance Criteria (WAC) analysis has classified the waste as suitable for an inert landfill.

8.2 Recommendations

The thickness of the made ground beneath the proposed store footprint is anticipated to be circa. 2.5 to 3.0m based on the intrusive investigations to date. Due to buried obstructions in the made ground, (indicated in \leq 1m refusals in five of the seven window samples targeting the proposed store footprint), made ground should be excavated and recompacted as graded fill.

Vibro-stone columns bearing in the natural SAND & GRAVEL deposits at depths of circa 3.0 – 5.0m bgl are considered a potential foundation solution, providing a minimum bearing capacity for either a raft or pad & strip foundation for a ground-bearing floor slab, as specified by the Structural Engineer. The strength, depth and composition of these SAND & GRAVEL deposits is unknown at the time of writing.

If pad foundations are selected, then a layer of compacted $6F_2$ capping overlying the existing but recompacted made ground to a minimum specified bearing capacity is considered to be suitable beneath a ground bearing floor slab.

CBR values estimated from the DCP tests indicated that, near the surface, the CBR values were variable, with several values of <10% recorded. Poorly compacted Made Ground backfill resulting from the demolition works should be excavated, processed as necessary to produce a 6F2 material and replaced in compacted layers in accordance with an engineering specification.

A Design Sulphate Class DS-2 is considered appropriate for buried concrete, and an ACEC Class of AC-3s is considered appropriate for the location.

Excavation side walls may not be stable even in the short term without support or without being battered back to a safe slope gradient. A detailed inspection of the side slopes should be made during excavation and a risk assessment carried out to fully assess the support measures required.

No groundwater was observed within any of the boreholes during the intrusive investigation. During the monitoring period, water was found within WS05 at between 1.52m bgl and 1.53m bgl.

8.3 Ground Gas

The results of four rounds of gas monitoring visits placed the site into Characteristic Situation 1. Gas protection measures are not required with respect to methane or carbon dioxide. However, the site is within an Intermediate Probability Radon Area and as such, basic radon protection measures shall be required.

REFERENCES & GUIDANCE

AGS, Guidance on the Waste Classification for Soils – A Practitioners' Guide 2019.

Barnes, G. 2010, Soil Mechanics Principles and Practice. 3rd Edition.

BRE, Special Digest 1:2005 (3rd Edition), Concrete in Aggressive Ground. 2005.

BR 211, Guidance on protective measures for new buildings (including supplementary advice for extensions, conversions and refurbishment projects), 2023.

BRE Digest 412 Desiccation in Clay Soils 1996

BRE Digest 365 Soakaway Design, 2003..

BRE465 Cover Systems for Land Regeneration 2004.

BS 10175:2011+A1:2013, Investigation of potentially contaminated sites: Code of practice.

BS 1377:1999. Methods of test for soils for civil engineering purposes.

BS 5930:2015+A1:2020, Code of practice for site investigations.

BS 8485:2015+A1 2019, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.

BS 8576:2013, Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs).

BS EN ISO 22476-3:2005, Geotechnical investigation and testing: Field testing - Standard penetration test. CIRIA, C504, Engineering in glacial tills, 1999.

CIRIA, C665, Assessing risks posed by hazardous ground gases to buildings, 2007.

CIRIA, C682, The VOCs Handbook: Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination, 2009.

CIRIA, C716, Remediating and mitigating risks from volatile organic compound (VOC) vapours from land affected by contamination, 2012.

CIRIA C733, Asbestos in Soil and Made Ground: A Guide to Understanding & Managing Risks.

CL:AIRE/EIC/AGS, The Soil Generic Assessment Criteria for Human Health Risk Assessment, 2009.

CL:AIRE, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination -Final Project Report. 2013.

CL:AIRE, The Definition of Waste: Development Industry Code of Practice Version 2

DEFRA, Circular 01/2006, Contaminated Land Environmental Protection Act 1990, Part 2A. 2006.

DEFRA, SP1010, Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document. March 2014.

Environment Agency, Verification of Remediation of Land Contamination Science Report – NC/00/38/SR

Environment Agency, Waste Classification, Guidance on the classification and assessment of waste (1st Edition V1.2GB) Technical Guidance WM3. October 2021.

Health & Safety Executive, HSG 66, Protection of Workers and the General Public During Redevelopment of Contaminated Land. 1991.

Highways Agency, IAN 73/06 Rev 1, Design of Pavement Foundations, 2009.

Land Contamination Risk Management www.gov.uk 08.10.2020.

LCM/CIEH, The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, S4UL3146, 2015. NHBC Standards, 2023.

Tomlinson, M.J., 2001, Foundation Design and Construction, 7th Edition.

The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015

The Definition of Waste: Development Industry Code of Practice, CL:AIRE 2011.

UKWIR, Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites. 2011

STUDY LIMITATIONS

IMPORTANT. This section should be read before reliance is placed on any of the information, opinions, advice, recommendations or conclusions contained in this report.

1. This report has been prepared by Remada, Ltd with all reasonable skill, care and diligence within the terms of the Appointment and with the resources and manpower agreed with (the 'Client'). Remada does not accept responsibility for any matters outside the agreed scope.

2. This report has been prepared for the sole benefit of the Client unless agreed otherwise in writing.

3. Unless stated otherwise, no consultations with authorities or funders or other interested third parties have been carried out. Remada is unable to give categorical assurance that the findings will be accepted by these third parties as such bodies may have published, more stringent objectives. Further work may be required by these parties.

4. All work carried out in preparing this report has used, and is based on, Remada' professional knowledge and understanding of current relevant legislation. Changes in legislation or regulatory guidance may cause the opinion or advice contained in this report to become inappropriate or incorrect. In giving opinions and advice pending changes in legislation, of which Remada is aware, have been considered. Following delivery of the report Remada has no obligation to advise the Client or any other party of such changes or their repercussions.

5. This report is only valid when used in its entirety. Any information or advice included in the report should not be relied upon until considered in the context of the whole report.

6. Whilst this report and the opinions made are to the best of Remada' belief, Remada cannot guarantee the accuracy or completeness of any information provided by third parties.

7. This report has been prepared based on the information reasonably available during the project programme. All information relevant to the scope may not have received.

8. This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of changes in the condition of the site since the time of the investigation.

9. The content of this report represents the professional opinion of experienced environmental consultants. Remada does not provide specialist legal or other professional advice. The advice of other professionals may be required.

10. Where intrusive investigation techniques have been employed they have been designed to provide a reasonable level of assurance on the conditions. Given the discrete nature of sampling, no investigation technique is capable of identifying all conditions present in all areas. In some cases the investigation is further limited by site operations, underground obstructions and above ground structures. Unless otherwise stated, areas beyond the boundary of the site have not been investigated.

11. If below ground intrusive investigations have been conducted as part of the scope, service tracing for safe location of exploratory holes has been carried out. The location of underground services shown on any drawing in this report has been determined by visual observations and electromagnetic techniques. No guarantee can be given that all services have been identified. Additional services, structures or other below ground obstructions, not indicated on the drawing, may be present on site.

12. Unless otherwise stated the report provides no comment on the nature of building materials, operational integrity of the facility or on any regulatory compliance issues.

13. Unless otherwise stated, samples from the site (soil, groundwater, building fabric or other samples) have NOT been analysed or assessed for waste classification purposes.

TABLES (not presented within text).

Table 2: Gas Groundwater Monitoring Data

SITE	GAS & GROUNDWATER MONITORING DATA E Lidi Blackwood, Penmaen Road																						
PROJECT N	ROJECT No. 1271.03 Atmospheric & Ground C											& Ground Co	nditions										
Visit 1 of 4					Atmospheric Pressure Variations During Visit											Ground Surface Conditions							
Carried Out	by:	Peter Sear	ing		1008 - 1009 mb											Damp							
Date:																							
Instrument						Atmospheric Pressure Trend Over Previous 48hrs											Weather Conditions						
Details		GFM436 14	1048			Rising											Overcast						
Well No.	Cover Height	Well	CH4 ([% v/v)	CH ₄ CO ₂ (% v/v)		O2 (% v/v)		H2S	H2S 0			Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments	
	(m AOD)	Diameter (mm)	Peak	Steady	Steady LEL (%)	Peak	Steady	Minimum	Steady	Minimum	Steady	Minimum	Steady	(secs)^	Rate (I/hr)	Pressure (mb)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	
WS03A	144.200	50	0.0	0.0	0.0	2.3	2.3	17.2	17.2	0.0	0.0	0.0	0.0	180	0.0	0.00	-	-	1009	DRY	DRY	2.600	
WS05	144.080	50	0.0	0.0	0.0	2.0	2.0	17.7	17.7	0.0	0.0	0.0	0.0	180	0.0	0.00	-	-	1008	DRY	DRY	2.000	
WS06	144.060	50	0.0	0.0	0.0	5.8	5.8	12.0	12.0	0.0	0.0	0.0	0.0	180	0.0	0.0	-	-	1008	DRY	DRY	1.000	

NR = Not Recorded ^ F

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

	GAS & GROUNDWATER MONITORING DATA																				R	EMADA		
SITE		Lidl Blackw	vood, Per	nmaen R	oad												GEO T CONSULTANTS							
PROJECT No	OJECT No. 1271.03 Atmospheric & Ground G											& Ground Cor	onditions											
Visit 2 of 4							Atm	ospheri	c Pressu	ire Varia	tions Du	uring Vis	sit						Ground Su	rface Cond	itions			
Carried Out I	by:	Usamah K							1	006mb						Dry								
Date: 04.11.24																,								
Instrument		Atmospheric Pressure Trend Over Previous 48hrs													Weathe	er Condition	าร							
Details		GFM436 14	1048			Falling											Clear							
Well No.	Cover Height	Well	Well CH ₄ (% v/v)		CH4	CO ₂ (% v/v)	O ₂ (%	v/v)	H2S (ppm)		CO (ppm)		Duration	Flow	Relative	PID (ppm)		Atmospheric	Water Level	Water Level	Depth of	Comments	
	(m AOD)	(m AOD) Diameter (mm) Peak Steady			Steady LEL (%)	Peak	Steady	Minimum	Steady	Minimum	Steady	Minimum	Steady	(secs)^	Rate (I/hr)	Pressure (mb)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)		
WS03A	144.200	50	1.7	0.0	0.0	1.8	1.8	15.4	17.4	NR	NR	NR	NR	60	0.0	0.00	-		1006	DRY	DRY	2.600		
WS05	144.080	50	0.3	0.0	0.0	0.7	0.7	19.0	19.0	NR	NR	NR	NR	60	0.0	0.00	-	-	1006	DRY	DRY	2.000		
WS06 144.060 50 0.6 0.0			0.0	3.7	3.7	15.2	15.2	NR	NR	NR	NR	60	0.0	0.00	-	-	1006	DRY	DRY	1.000				

Notes: NR = Not Recorded

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

	GAS & GROUNDWATER MONITORING DATA														REMADA								
SITE	ISITE Lidl Blackwood, Penmaen Road										GEO 7 CONSULTANTS												
PROJECT No. 1271.03																							
Visit 3 of 4					Atmospheric Pressure Variations During Visit											Ground Surface Conditions							
Carried Out Date:		1015mb											Dry										
Instrument						Atmospheric Pressure Trend Over Previous 48hrs														Weath	er Conditio	ns	
Details			Rising											Clear, sunny									
Well No.	Cover Height	Well	CH4 (% v/v)	CH ₄ CO ₂ (% v/v)		O ₂ (%	O2 (% v/v)		H2S (ppm) C		ppm)	Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments	
	(m AOD) Diameter (mm) Peak Stead					Peak	Steady	Minimum	Steady	Minimum	Steady	Minimum	Steady	(secs)*	Rate (I/hr)	Pressure (mb)	Peak	Steady	Pressure (mb)	(m bgl)	(m AoD)	Pipe (m bgl)	
WS03A	144.200	0 50 0.0 0.0		0.0	0.0	1.8	1.7	17.3	17.3	NR	NR	NR	NR	60	0.0	0.00	-	-	1015	DRY	DRY	2.000	
WS05	144.080	50	0.0	0.0	0.0	0.7	0.6	18.9	18.9	NR	NR	NR	NR	60	0.0	0.00	-	-	1015	1.520	142.560	1.700	
WS06 144.060 50 0.0 0.0					0.0	5.5	5.5	13.0	13.0	NR	NR	NR	NR	60	0.0	0.00	-	-	1015	DRY	DRY	0.600	

Notes: NR = Not Recorded ^ F

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

	GAS & GROUNDWATER MONITORING DATA													REMADA										
SITE Lidl Blackwood, Penmaen Road										GEO T CONSULTANTS														
PROJECT No	ROJECT No. 1271.03 Atmospheric & Ground C										& Ground Cor	inditions												
Visit 4 of 4						Atmospheric Pressure Variations During Visit											Ground Surface Conditions							
Carried Out	by:	Peter Sear	ing		001_002 mb												Damp							
Date:		55. 502 mb																						
Instrument Details		GFM436 14	1048		Atmospheric Pressure Trend Over Previous 48hrs Falling											Weather Conditions Overcast and drizzling								
Well No.	Cover Height	Well	CH4 (% v/v)	CH4	CO ₂	(% v/v)	O ₂ (%	v/v)	H2S	(ppm)	CO (ppm)	Duration	Flow	Relative	PID	(ppm)	Atmospheric	Water Level	Water Level	Depth of	Comments	
	(m AOD)	(mm)	Peak	Steady	Steady LEL (%)	Peak	Steady	Minimum	Steady	Minimum	Steady	Minimum	Steady	(secs)^	Rate (I/hr)	Pressure (mb)	Peak	Steady	Pressure (mb)	(m bgi)	(M AOD)	Pipe (m bgl)		
WS03A	144.200	50	0.0	0.0	0.0	5.1	4.7	12.9	13.0	0.0	0.0	0.0	0.0	180	0.0	0.00	-	-	992	DRY	DRY	2.400		
WS05	144.080	50	0.0	0.0	0.0	1.9	1.9	14.8	14.8	0.0	0.0	0.0	0.0	180	0.0	0.00	-	-	991	1.530	142.550	1.750		
WS06	144.060	50	0.0	0.0	0.0	5.2	5.2	13.7	13.7	0.0	0.0	0.0	0.0	180	0.0	0.00	-	-	991	DRY	DRY	0.600		

Notes: NR = Not Recorded ^

^ For measurement of gas concentrations

> = Above LEL WST = Water Sample Taken

GL = Ground Level

Table 3: Comparison of Soil Chemical Analyses with GAC

		Lab Sam	ple Number:		357887	357888	357889	357893	357894	357890	357891	357892
		Sample	Reference:		WS01	WS03A	WS04	WS07	WS08	W S05	W \$05	W \$06
			Borehole:		None Supplied							
		То	Depth (m):	Commercial GAC	0.3	0.5	0.6	0.25	0.2	0.35	1.80	0.15
		Basa	I Depth (m):	1.0% SOM	22/10/2024	22/10/2024	22/10/2024	22/10/2024	22/10/2024	22/10/2024	22/10/2025	22/10/2024
		D -			None							
		Da	te Sampled:		Supplied							
		Limit of										
Determinand	Units	detectio	Accreditatio	[mg/kg unless stated]								
		n	II Status									
Moisture	%	0.01	NONE		4.7	6.7	9.7	3.7	5.3	4.3	5.3	4.9
Asbestos in Soil	Туре	N/A	ISO 17025		Not-detected	Not-detected	Not-detected	Not-detected	Not-detected			
Asbestos Analyst ID	N/A	N/A	N/A			-	-		-			
pH	pH Units	N/A	MCERTS		7.8	7.6	8.2	9.3	8.6		-	
Magnesium (Water Soluble) Sulphate (2:1 Water Soluble) as SO4												
Total Sulphur												
Chloride (Water Soluble)												
Nitrate (Water Soluble)												
Ammonium (water Soluble) Sulphate (Acid Soluble)												
Arsenic	mg/ka	1.00	MCERTS	640	13	51	11	3.5	10		-	
Beryllium	mg/kg	0.06	MCERTS	12	0.92	1.9	0.77	0.14	0.48	-		-
Boron	mg/kg	0.20	MCERTS	240000	0.8	1.1	0.7	0.5	0.7	-	-	
Cadmium	mg/kg	0.20	MCERTS	190	0.3	< 0.2	0.3	1.8	61	-	-	-
Chromium (Hexavalent)	mg/kg	1.80	MCERTS	33	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8		-	
Chromium (Trivalent)	mg/kg	1.00	NONE	8600	19	26	16	9	37	-	-	
Chromium (aqua regia extractable)	mg/kg	1.00	MCERTS	-	20	26	16	9	37	-	-	•
Lead	mg/kg	1.00	MCERTS	08000 NC	14	33	14	14	160			
Mercury	mg/kg	0.30	MCERTS	58 ^{vip} (25.8)	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3			
Nickel	ma/ka	1.00	MCERTS	980	38	36	26	3.7	16	-	-	
Selenium	mg/kg	1.00	MCERTS	12000	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-	
Vanadium	mg/kg	1.00	MCERTS	9000	23	40	21	5.4	14	-	-	-
Zinc	mg/kg	1.00	MCERTS	730000	71	62	61	89	360			
Total Cyanide	mg/kg	1.00	MCERTS		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-	
Fraction Organic Carbon (FOC)	N/A	0.001	MCERTS		0.017	0.012	0.0077	0.012	0.0072		-	
Calculated TOC from FOC			-		1.70	1.20	0.77	1.20	0.72	-	-	
Aliphatic TPH >C5-C6	ma/ka	0.01	NONE	3200 ⁶⁴ (304)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C6-C8	mg/kg	0.01	NONE	7800 ^{eci} (144)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aliphatic TPH >C8-C10	mg/kg	0.01	NONE	2000 ^{sol} (78)	0.17	< 0.010	0.029	0.15	0.45	< 0.010	< 0.010	0.075
Aliphatic TPH >C10-C12	mg/kg	1.00	MCERTS	9700 ^{sol} (48)	1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	mg/kg	2.00	MCERTS	59000 ^{scl} (24)	< 2.0	2.2	< 2.0	2.9	< 2.0	2.5	< 2.0	< 2.0
Aliphatic TPH >C16-C21	mg/kg	8.00	MCERTS	1600000	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
Aliphatic TPH >C21-C35	mg/kg	8.00	MCERTS		25	12	< 8.0	73	24	11	9	26
Aromatic TRH >C5 C7	mg/kg	10.00	NONE		20	14	10	76	<u>24</u>	13	10	26
Aromatic TPH >C5-C7	mg/kg	0.01	NONE	26000 (1220) 56000 ⁻⁴⁰ (869)	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Aromatic TPH >C8-C10	ma/ka	0.02	NONE	3500 ¹⁴⁰ (613)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Aromatic TPH >C10-C12	mg/kg	1.00	MCERTS	16000 ^{sol} (364)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	mg/kg	2.00	MCERTS	36000 ⁴⁰¹ (169)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Aromatic TPH >C16-C21	mg/kg	10.00	MCERTS	28000	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Aromatic TPH >C21-C35	mg/kg	10.00	MCERTS	28000	< 10	< 10	< 10	130	17	< 10	< 10	17
Total Aromatic Hydrocarbons	mg/kg	10.00	NONE	1	10	10	10	130	17	10	10	17
Calculated Sum TPH (sum Aliphatic + sum Aromatic)					36	24	20	206	41	23	20	43
Naphthalene	mg/ka	0.05	MCERTS	190 ^{eol} (76.4)	0.39	< 0.05	< 0.05	< 0.05	0.08		-	
Acenaphthylene	mg/kg	0.05	MCERTS	83000 ^{ed} (86.1)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	84000 ^{sci} (57)	< 0.05	< 0.05	< 0.05	0.15	0.16	-	-	
Fluorene	mg/kg	0.05	MCERTS	63000 ^{ed} (30.9)	< 0.05	< 0.05	< 0.05	0.06	0.08			
Phenanthrene	mg/kg	0.05	MCERTS	22000	0.46	0.14	< 0.05	0.35	0.75		-	
Anthracene	mg/kg	0.05	MCERTS	520000	< 0.05	< 0.05	< 0.05	< 0.05	0.17	-	-	-
Fluorantnene	mg/kg	0.05	MCERTS	23000	< 0.05	< 0.05	< 0.05	0.59	2.1	· ·	•	•
r jielie Benzolalanthracene	mg/kg	0.05	MCERTS	54000	< 0.05	< 0.05	< 0.05	0.87	1.7		-	
Chrysene	mg/kg	0.05	MCERTS	350	< 0.05	< 0.05	< 0.05	0.31	1.5		-	
Benzo[b]fluoranthene	ma/ka	0.05	ISO 17025	44	< 0.05	< 0.05	< 0.05	0.36	2.4			
Benzo[k]fluoranthene	mg/kg	0.05	ISO 17025	1200	< 0.05	< 0.05	< 0.05	0.17	0.75			
Benzo[a]pyrene	mg/kg	0.05	MCERTS	35	< 0.05	< 0.05	< 0.05	0.29	1.7	-	-	
Indeno(1,2,3-c,d)Pyrene	mg/kg	0.05	MCERTS	500	< 0.05	< 0.05	< 0.05	0.14	1.1		-	
Dibenz(a,h)Anthracene	mg/kg	0.05	MCERTS	3.5	< 0.05	< 0.05	< 0.05	< 0.05	0.26	-	-	
Benzo[g,h,i]perylene	mg/kg	0.05	MCERTS	3900	< 0.05	< 0.05	< 0.05	0.17	1.2	-	-	
Total Of 16 PAH's	mg/kg	0.8	ISO 17025	-	0.86	< 0.80	< 0.80	3.59	15.1		-	
Benzene Toluene	µg/kg	5.00	MCERTS	27	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Ethylhenzene	µg/kg µg/kg	5.00	MCERTS	56000 (869) 5700 (819)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
p & m-xvlene	ua/ka	8.00	MCERTS	5900 ⁴³ (576)	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
o-xylene	µg/kg	5.00	MCERTS	6600 ^{est} (478)	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5.00	NONE		< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Phenols	ma/ka	1.00	MCERTS	440 ^{sr} 26000)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-	-	

NC. No published offend, U/E. Unsublish sample was: Sciencing offend presented acreaded he vigour adsultation time, visifini a presented in brackets. 26: Sciencing offend presented raced he vigour adsultation in mail, visifini a presented in brackets. 26: Sciencing offend passed in adsultation of advect also contact (publisher in bracket) based on head's following long term exposure provided for illustration only (1): For assessment advect of the surrogate maker approach. The GAC for Coal Ter multi be used instead of feronidy/pyrese. * Value presented in mg/kg

Determinand concentration below the GAC Determinand concentration in exceedance of GAC Determinand concentration in exceedance of the vapour/solubility saturation limit.

FIGURES

EXPLORATORY HOLE LOGS

G	EO T LONS	JULIANIS									3			
Projec	t Name:	Blackwood			Client: L	idl Great B	Britain Lto	1		Date: 22/1	0/2024			
Locati	on: Pen	maen Road			Contrac	tor:				Co-ords: E	318052.00) N1964	480.00	
Projec	:t No. : 1	271.03			Crew N	ame:				Drilling Eq	uipment: T	racked	Rig	
Bor	ehole N	umber	Hole	туре		Level		Logged	Ву	S	cale		Page Numl	ber
	WS01		V	VS	143	3.76m AoD		UK	1	1	:15		Sheet 1 of	1
Well	Water Strikes	Sampl	e and li Type	n Situ Testii Resul	n g ts	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
		0.30	ES			0.20	143.56		MADE Aggreg quartzit present to 0.05/ MADE is angu fragme	GROUND: B ate sizes ran e and mudst i. Rebar foun 2m and 0.050 GROUND: D lar to subang nts, concrete	rownish grey ging from 5 one. Less th ded at 0.045 0 to 0.059m. ark grey sam ular fine to c and sandsto	/ concre to 45mn en 5% v i to 0.05 dy grav coarse o one.	ete. n of /oids 00m, 0.047 el. Gravel of brick	
		0.80	ES			0.70	143.06		MADE Gravel mudsto	GROUND: R is angular to ne and conc	eddish brow subangular rete.	n sandy fine to c	gravel. coarse of	
		1.00	SPT	N=5 (1,1/2	,1,1,1)	0.84	142.92		Soft bro sandy (to coars	own mottled (CLAY. Gravel se of sandsto	grey orange is angular to ne, mudstor	slightly g subang ne and c	gravelly gular fine coal.	 1
		1.30	D			1.35	142.41		Firm br	own mottled	orange grey	slightly	gravelly	
									to coars	se of mudsto	ne, sandstor	ne and n	are coal.	
		2.00	SPT	50 (9,10/5 220mr	50 for n)	2.00	141.76			End of	Borehole at 2	000m		2
														3 —
Denth	Hole Diame	eter Diameter Do	Casing	Diameter Diameter	Denth To		Chiselling	ation	Tool	Denth Tor	Inclination	and Orier	ntation	tation
Dehni			Pui Dase	Dameter					1001	0.00	2.00	90		0
Domo	arko											<u> </u>		
1) Loca	ation CAT	scanned prio	r to drillir	na.										
2) No g	groundwa	iter encounter	ed.	J.										0

Projec	t Name:	Blackwoo	bd	CI	lient: L	idl Great B	ritain Lto			Date: 22/10/2024	
ocati	on: Pen	maen Roa	d	Co	ontrac	tor:				Co-ords: E318073.00	N196482.00
Projec	t No. : 1	271.03		Cr	rew Na	ame:				Drilling Equipment: Tra	acked Rig
Bor	ehole N	umber	Hole	е Туре	444			Logged	Ву	Scale	Page Nu
	WS02	San	۷ ال has alay	VS	144	Lonth				1:15	Sheet 1
Well	Strikes	Depth (r	n) Type	Results		(m)	(m)	Legend		Stratum Descript	ion
		0.40 ES				0.23	144 08		MADE (Aggrega consisti founded Less that	GROUND: Brownish grey ate sizes ranging from 5 to ng of mudstone and quart d at 0.195 to 0.200m and (an 5% voids present.	concrete. 55mm zite. Rebar).199 to 0.204m.
						0.35	143.96		MADE (subbase coarse	GROUND: Dark grey sand e. Gravel is angular to sub of brick fragments, concre	ly gravel angular fine to te and
		0.40 ES 0.90 D 1.00 SPT N=3 (1,0 1.50 D		N=3 (1,0/0,1,1	1,1)	1 45	142.86		sandsto Firm gre sandy C coarse	ne. ey and orangeish brown s CLAY. Gravel is subangula of sandstone.	ightly gravelly r medium to
		1.50	D						Firm bro sandy C to coars	own mottled orangeish gre CLAY. Gravel is angular to se of mudstone, sandstone	ey slightly gravell subangular fine and rare coal.
<u> 1021</u> 1		2.00	SPT	50 (25 for 115m for 115mm)	nm/50)	2.00	142.31			End of Borehole at 2.	000m

ttled orangeish grey slightly gravelly Fravel is angular to subangular fine udstone, sandstone and rare coal. 2 nd of Borehole at 2.000m 3 Chiselling se Duration Casing Diameter Inclination and Orientation Hole Diameter Depth TopDepth BaseInclination0.002.0090 Orientation Depth Base Diameter Depth Base Diameter Depth Top Depth Base Tool 0

Remarks

1) Location CAT scanned prior to drilling.

2) No groundwater encountered.
 3) Backfilled with arisings.

Page Number

Sheet 1 of 1

1

	JULIMNIS													
Project Name	: Blackwo	od			Client: L	idl Great B	ritain Ltd			Date: 22/10	0/2024			
Location: Pen	maen Roa	ad			Contrac	tor:				Co-ords: E	318061.00	N1964	150.00	
Project No. : 1	271.03				Crew Na	ame:				Drilling Equ	uipment: Ti	acked	Rig	
Borehole N	umber	I	Hole w	Туре	144			Logged	Ву	Sc	cale ·15		Page Numb	er 1
Water	Sar	nple ai	nd In	Situ Testir	ng	Depth	Level				. 10		Sheet 1 Of	
Well Strikes	Depth (m) T	уре	Result	ts	(m)	(m)	Legend		Stratu	um Descrip	otion		
						0.16	144.04		MADE then 19 25mm. MADE gravel. coarse	% voids. Aggre No rebar. GROUND: Gi Gravel is ang of concrete a	rey and brow Jular to suba nd sandstor	vn sand ngular f	and ine to	
						0.45	143.75			End of E	Borehole at 0	.450m		
														3 —
Hole Diam Depth Base [] Remarks 1) Location CAT	eter Diameter	Depth B	asing D Base	nameter Diameter Jiameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination Depth Base 0.45	and Orien Inclina 90	Itation tion Orien	tation)

Borehole terminated at 0.45m bgl due to sampler refusal.
 Backfilled with arisings.

Protect IN The series of the	GEO T CON	SULIANIS								0	0			
Location: Permanen Road Contractor: Construction: Permanen Road Permanent	Project Name	: Blackwood			Client: L	idl Great B	Britain Ltd			Date: 22/1	0/2024			
Project Number Hole Type Level Level Level (4420mAoD Logged By UK Scale Pope Number Status Weit Sample and In Stu Testing Barket Crew Name: Logged By Level (4420mAoD Logged By UK Scale Pope Number Stratum Description Weit Sample and In Stu Testing Depth (m) Open (m) Level (m) Level (m) Level (m) Level (m) Stratum Description Image Sample and In Stu Testing Depth (m) Pope Number (m) Depth (m) Level (m) Level (m) Level (m) Stratum Description Image Sample and In Stu Testing Depth (m) Pope Number (m) Depth (m) Type Results Note CFOUND Station Incom Testing Pope Number (m) Image Sample and Sample and In S	Location: Pen	maen Road			Contrac	tor:				Co-ords: E	318061.00	N196456.	00	
Border Number WS33 Hole Type Integration Level UK Logged P State Page Amber Page Amber State I of 1 Weil Wate Server Sample and In Situ Testing Depth (m) Dop h (m) Level (m) Level UK Legend (m) State Page Amber Ambe	Project No. : 1	271.03			Crew Na	ame:				Drilling Eq	uipment: Tr	acked Rig		
Words are with Situ Performed in Situ Testing (m) Operation (m) UK 1:16 Sheart of 1 Weil Words Sample and In Situ Testing (m) Operation (m) Use (m) Stratum Description Image: stratum Description	Borehole N	umber	Hole	е Туре		Level		Logged	Ву	S	cale	Page	e Numbe	er
Vertex Statuse Sinker Depth (m) Type Results MADE CROUND. Service of provide with less 28mm. Robot Rog room the with less 28mm. Robot Rog Room Time. 1.00 SPT N=3 (1,1/1,0,1.1) 1.30 122.00 Way soft gray way andy CLAV. 1 1.30 1.30 122.00 D 1.70 142.50 Frim to satil company and y CLAV. 1 1.30 2.60 SPT N=31 (4,577.78.9) 2.60 141.60 End of Boretone at 2.600m 2 1.40 2.60 SPT N=51 (4,577.78.9) 2.60 141.60 End of Boretone at 2.600m <	WS03	a	V	VS	144	.20m AoD		UK		1	:15	She	et 1 of 1	
MADE GRQUIND: MADE GRQUIND: Browning pay: control by lines pays the subscription from 10 to 2 25mm. Robit founded at 0.1 to 0.11m. 0.22 - 1.30 B 0.22 143.06 MADE GRQUIND: Reddam brown grows analytic by champular from 10 to 2 25mm. Robit founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 0.50 ES 0.22 143.06 MADE GRQUIND: Reddam brown grows analytic brown model at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 1.00 SPT N=3 (1,5/1,0,1,1) Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 1.30 1.30 142.00 Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 1.30 2.00 B Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 1.30 1.20 Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. Image: subscription founded at 0.1 to 0.11m. 1.30 1.20 Image: subscription founded at 0.100m. 2.00 SPT N=31 (Well Strikes	Depth (m)	Type	n Situ Testir Result	ng ts	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
0.22 1.30 B 0.22 143.98 MADE GROUND. Redida how any early signify to coarse of brick fragments, mudstone and coal. 0.50 ES 1.00 SPT N=3 (1,1/1.0,1,1) Very loose below fm. 1 1.30 2.00 B 1.30 142.90 Very loose below fm. 1 1.30 2.00 B 1.30 142.90 Firm board group very sandy CLAY. Firm board group very sandy CLAY. 1.80 D 1.70 142.50 Firm board group very sandy CLAY. Firm board group v				- Tesu					MADE than 1% 25mm.	GROUND: B 6 voids. Aggr Rebar found	rownish grey regate size ra led at 0.1 to (r concrete wi anging from).11m.	ith less 10 to	-
Image:		0.22 - 1.30	ES			0.22	143.98		MADE (clayey s to coars	GROUND: R sand. Gravel se of brick fra	leddish brown is angular to agments, muo	n gravelly sli subangular dstone and d	ghtly fine coal.	
1.30 D 1.30 142.90 Very soft grey very sandy CLAV. Firm below 1.45m. Firm below 1.45m. Firm below 1.45m. 1.80 D 1.70 142.50 Firm bolow 1.45m. Firm bolow 1.45m. Firm bolow 1.45m. 1.80 D 1.70 142.50 Firm bolow 1.45m. Firm bolow 1.45m. Firm bolow 1.45m. 2.00 SPT N=31 (4,5/7,7,8,9) Firm bolow 1.45m. 2.00 SPT N=31 (4,5/7,7,8,9) Firm bolow 1.45m. 2.50 D 2.60 SPT SPT N=50 (25 for 75m/50 for 115mm) 2.60 Mole Durneter Casing Dameter Color 115mm) 2.60 141.60 End of Borehole at 2.600m 3 - Mole Durneter Casing Dameter Depth Base Durneter Depth Base Durneter Chielling. Sector 115mm 3 - Remarks 1) Location CAT Scanned prior to drilling. 1) Advented Sector 115mm Sector 115mm Sector 115mm		1.00	SPT	N=3 (1,1/1,	.0,1,1)				Very loo	se below 1	m.			- - - - 1 - - - - - -
1.80 D 1.80 D 2.00 SPT N=31 (4,5/7,7,8,9) 142.50 2.00 SPT 2.00 SPT N=31 (4,5/7,7,8,9) 141.60 Endotation and Directation 2.00 SPT N=50 (25 for Tom 15mm) 2.60 SPT N=50 (25 for Tom 50 for 115mm) 2.60 141.60 End of Borehole at 2.600m Network Depth Base Diameter Cadag Diameter Depth Base Diameter Depth Base Diameter Depth Base Diameter Depth Base Diameter 1.0colton CAT scanned prior to drilling. 1) Location CAT scanned prior to drilling. 2.00 No groundwater encountered.		1.30 1.30 - 2.00	D B			1.30	142.90		Very so Firm bel	ft grey very s low 1.45m.	sandy CLAY.			-
2.50 D 2.60 SPT N=50 (25 for 75mm/50 for 115mm) 2.60 141.60 End of Borehole at 2.600m End of Borehole at 2.600m 141.60 End of Borehole at 2.600m 15.7 End of Borehole at 2.600m 10.60 Diameter 10.60 Depth Base 10.60 Diameter 10.60 Inclination and Orientation 10.60 Inclination AD resource 10.60 Casaned prior to drilling. 10.60 Secondarde encountered.		1.80 2.00	D	N=31 (4,5/7	7,7,8,9)	1.70	142.50		Firm to grey slig angular	stiff orangeis ghtly gravelly to subangul	sh brown mot / sandy CLAY ar fine to coa	ttled orange /. Gravel is Irse of sands	and stone.	- - - - - - - - - - - - - - - - - - -
Hole Diameter Casing Diameter Chiselling Inclination and Orientation Depth Base Diameter Depth Top Depth Base Duration 0.00 2.60 90 0 Remarks 1) Location CAT scanned prior to drilling. 2) No groundwater encountered. Depth Iop Depth Iop Enclination Diameter		2.50 2.60	D SPT	N=50 (25 75mm/50 for	5 for 115mm)	2.60	141.60			End of	Borehole at 2	.600m		
Remarks 1) Location CAT scanned prior to drilling. 2) No groundwater encountered.	Hole Diam Depth Base	eter Diameter Dep	Casing oth Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling ise Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	- - 3
0) here to the first second se	Remarks 1) Location CAI 2) No groundwa	۲ scanned prior ater encountere	r to drillir ed.	ng.						0.00	2.60	90		

e: Blackwo	od	C	Client: Lid	l Great B	ritain I td			Data: 22/1/	0/2024			
		-							0/2024			
nmaen Ro	ad	C	Contractor	r:				Co-ords: E	318076.00	N1964	58.00	
1271.03		C	Crew Nam	ne:				Drilling Equ	uipment: Tr	acked F	Rig	
Number	Hole	е Туре	L	evel		Logged	Ву	Sc	cale	F	age Numb	er
04	V	VS	144.2	1m AoD		UK		1:	:15		Sheet 1 of	1
Bar Borne Sar	mple and li m) Type	n Situ Testing Results)	Depth (m)	Level (m)	Legend		Stratu	um Descrip	otion		
Depth (0.60 1.00 1.10	m) Type ES SPT D	Results N=6 (1,1/1,1, 50 (11,11/50 180mm)	,2,2)) for	(m) 0.22 0.50 1.00 1.15 2.00	(m) 143.99 143.71 143.21 143.06		MADE (than 5% 40mm (at 0.120 to 0.133 MADE (clayeys to coarse sandy (coarse sandy (coarse sandsto Soft gree CLAY. S further to No Rec	GROUND: Br voids. Aggre of quartzite ar 3mm. GROUND: Re as and. Gravel as of brick frage of brick frage brick frage of brick frage of brick frage brick frage of brick frage of brick frage of brick frage of brick frage brick frage of brick frage o	ownish grey egate sizes i and mudstone a, 0.125 to 0. eddish brow is angular to gments, mudsi angeish brov bble at 1.15	v concret ranging f 2. Rebar 130mm i n gravelli 9 subangui dstone a vn slightli subangui tone and vn very s m bgl pre	e with less from 5 to founded and 0.128 y slightly ular fine nd coal. y gravelly ar fine to andy eventing	
neter Diameter T scanned	Casing Depth Base prior to drillir	Diameter Dia	Depth Top	Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination Depth Base 2.00	and Orient Inclinati 90	ation on Orien	3 —
	nmaen Ro 1271.03 Vumber A Sar Depth (0.60 1.00 1.00 1.10 2.00	Immaen Road 1271.03 Number Hole A N Sample and Ii N Depth (m) Type 0.60 ES 1.00 SPT 1.10 D 2.00 SPT Depth mark Casing Depth mark Depth mark Colspan="2">Casing Depth mark Depth mark Sample and Ii Sample and Ii Sample and Iii Sample and Iii Depth (m) Type 1.00 SPT 1.10 D Sample and Iii Sample and Iii Hole Sample and Iii Sample and Iii Sample and Iii Sample and	nmaen Road 0 1271.03 0 1271.03 0 1271.03 0 10 1271.03 0 10 10 10 10 10 10 10 10 10 10 10 10 10	nmaen Road Contracto 1271.03 Crew Nan Number Hole Type L 144.2 Sample and In Situ Testing Depth (m) Type Results 0.60 ES 0.60 ES 1.00 SPT N=6 (1,1/1,1,2,2) 1.10 D 2.00 SPT 50 (11,11/50 for 180mm) 2.00 SPT 50 (11,11/50 for 180mm) T scanned prior to drilling.	Immaen Road Contractor: 1271.03 Crew Name: Number Hole Type Level Mumber 144.21m AoD Sample and In Situ Testing Depth Depth (m) Type Results 0.22 0.60 ES 0.50 1.00 SPT N=6 (1,1/1,1,2,2) 1.00 1.10 D 1.15 1.15 2.00 SPT N=6 (1,1/1,1,2,2) 2.00 1.10 D 1.15 1.15 2.00 SPT SO (11,11/50 for 180mm) 2.00 180mm) SO (11,11/50 for 180mm) 2.00 2.00	Immaen Road Contractor: 1271.03 Crew Name: Yumber 144.21m AoD Level 144.21m AoD Sample and In Situ Testing Depth 144.21m AoD Depth (m) Type Results 0.22 0.60 ES 0.60 ES 1.00 SPT N=6 (1,1/1,1,2,2) 1.00 1.10 D 1.10 D 1.10 D 2.00 SPT SPT 50 (11,11/50 for 180mm) 2.00 SPT 50 (11,11/50 for 180mm) 2.00 142.21	Contractor: 1271.03 Crew Name: Number Hole Type Level Logged Number Hole Type Level Logged UK Sample and In Situ Testing Depth Level Level Legend Depth (m) Type Results 0.22 143.99	Contractor: 1271.03 Crew Name: 1271.03 Level Level UK Level UK Sample and In Situ Testing Depth (m) Level UK Sample and In Situ Testing Depth (m) MADE (Depth (m) Type Results Depth (m) MADE (0.60 ES 0.22 143.99 MADE (10.12 0.50 143.71 MADE (10.00 Set (1.1/1,1.2.2) 0.50 143.71 MADE (10.60 Set (1.1/1,1.2.2) 1.00 143.21	Image Road Contractor: Co-ords: E 1271.03 Crew Name: Drilling Eq 1271.03 Crew Name: Drilling Eq 1271.03 Crew Name: Logged By Stat 14 Sample and In Situ Testing Depth Level Legend Stat Depth (m) Type Results 0.22 143.99 MADE GROUND: R at 0.125 mm on quartizatia at 0.125 mm on quartizatia at 0.126 mo or quartizatia quartizatia at 0.126 mo or quartizatia at 0.126 mo or	Immeen Road Contractor: Co-ords: E318076.00 1271.03 Grew Name: Drilling Equipment: Tristering Drilling Equipment: Tristering Sample and In Situ Testing Depth Level Logged By Statum Description Depth (m) Type Results Depth Level Legend Stratum Description 0.50 0.22 143.99 MADE GROUND: Brownish grey than 5% volts. Aggregate above and 0.19 to 128mm, 0.125 to 0.133mm. Output Stratum Description 0.133mm. MADE GROUND: Brownish grey than 5% volts. Aggregate above and 0.19 to 128mm, 0.125 to 0.133mm. 0.80 ES 0.50 143.71 MADE GROUND: Soft date how to cause of brick fragments, mud standardore. 1.00 SPT N=6 (1.1/1, 1.2.2) 1.00 143.21 MADE GROUND Soft date how constandardore. 1.10 D N=6 (1.1/1, 1.2.2) 1.00 143.21 MADE Ground constant and status constant at 1.15 1.10 D SPT N=6 (1.1/1, 1.2.2) 1.00 143.21 End of Brownie at 2.15 2.00 SPT S0 (11, 11/60 for 1.00 2.00 142.21 End of Browhole at 2.15 Danet	Image: Road Contractor: Co-ords: E318078.00 N1964 1271.03 Crew Name: Drilling Equipment: Tracked 1 Vimber Hole Type Level Logged By Scale F Image: Sample and In Situ Testing Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Stratum Description 0.60 ES 0.22 143.99 MADE GRCUARD: Sort dark trace stranging 1 and 5% vices. The stratum description to 0.138m. 0.138m. 0.138m. 0.138m. 0.0138m. 0.0138m. <td>Immer Contractor Contract: Contract: Dilling Equipment: Tracked Rig Umber Hole Type Loved Loved by Scale Page Numb Page Numb Immer Hole Type Loved by Scale Page Numb Page Numb Immer Hole Type Results Depth (m) Type Results Depth (m) Page Numb Immer Depth (m) Type Results Depth (m) Type Results Depth (m) Results Results Depth (m) Results Depth (m) Results Depth (m) Results Depth (m) Results Results Depth (m) Results Results Depth (m) Results Results Results Depth (m) Results Results</td>	Immer Contractor Contract: Contract: Dilling Equipment: Tracked Rig Umber Hole Type Loved Loved by Scale Page Numb Page Numb Immer Hole Type Loved by Scale Page Numb Page Numb Immer Hole Type Results Depth (m) Type Results Depth (m) Page Numb Immer Depth (m) Type Results Depth (m) Type Results Depth (m) Results Results Depth (m) Results Depth (m) Results Depth (m) Results Depth (m) Results Results Depth (m) Results Results Depth (m) Results Results Results Depth (m) Results Results

3) Backfilled with arisings.

G	EO T CON	SULTANTS			-							
Projec	ct Name	Blackwo	ood		Client: I	Lidl Great B	Britain Lto	1		Date: 21/10/2024		
Locati	on: Pen	maen Ro	ad		Contrac	ctor:				Co-ords: E318100.00	N196446.00)
Projec	ct No. : 1	271.03			Crew N	lame:				Drilling Equipment: Ti	racked Rig	
Bor	ehole N WS05	umber 5	Но	le Type WS	14	Level 4.08m AoD		Logged UK	Ву	Scale 1:15	Page I Shee	Number t 1 of 1
Well	Water Strikes	Sai Depth (mple and	In Situ Testi	ng Its	Depth (m)	Level (m)	Legend		Stratum Descrip	otion	
						0.00	444.00		MADE	GROUND: Asphalt		
		0.35	ES			0.08	144.00		MADE with a h subang concret	GROUND: Reddish brow nydrocarbon odour. Grave ular fine to coarse of muc e.	n sandy gravel I is angular to Istone and	
		0.90 1.00	D SPT	N=32 (2,5/6	i,8,8,10)	0.60	143.48		MADE grey sli subang sandsto	GROUND: Firm orangeis ghtly sandy slightly grave ular to subrounded fine to one and mudstone.	h brown mottle ly clay. Gravel o coarse of	rd
						1.20	142.88		MADE slightly subrour mudsto	GROUND: Dense greyish clayey gravel. Gravel is s nded fine to coarse of sar ne.	n brown sandy subangular to ndstone and	
		1.80	ES			1.65	142.43		MADE slight h subrour quartzit	GROUND: Dark grey san ydrocarbon odour. Grave nded fine to coarse of mu e.	dy gravel with l is subangular dstone and	a - to - -
		2.00	SPT	N=50 (9,12 265m	2/50 for m)	2.00	142.08			End of Borehole at 2	.000m	2
Denth	Hole Diam	eter Diameter	Casir Depth Base	g Diameter	Depth T	op Depth Ba	Chiselling	ation	Tool	Inclination	and Orientation	Orientation
Rema 1) Loca	arks	scanned	prior to dril	ing.						0.00 2.00	90	

2) No groundwater encountered.3) Installation to 2.0m bgl; 1.0m plain pipe, 1.0m slotted pipe.

G	EO 7 CON	5ULIANIS								0	5			
Projec	t Name	Blackwoo	bd		Client: L	idl Great B	Britain Ltd			Date: 21/1	0/2024			
Locati	on: Pen	maen Roa	ıd		Contrac	tor:				Co-ords: E	318078.00	N196428	3.00	
Projec	t No. : 1	271.03			Crew N	ame:				Drilling Eq	uipment: Tr	acked Rig	3	
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	S	cale	Pa	ge Number	
	WS06	6	V	VS	144	1.06m AoD		UK		1	:15	Sh	neet 1 of 1	
Well	Water Strikes	Sam	ple and l	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrip	tion		
) 편 (20	Ounces	Depth (n	n) Type	Resul	ts	(11)	(11)		MADE	GROUND: A	sphalt.			
						0.11	143.95				·			_
		0.15	ES			0			MADE (with a h	GROUND: R	eddish browi odour. Grave	n sandy gra I is angulai	avel r to	-
									subang concret	ular fine to c e.	oarse of mud	Istone and		_
														_
						0.40	143.66		MADE	GROUND: D	ark grey grav	velly slightly	y clayey	-
··. – :									sand. G coarse	Fravel is angui of mudstone	ular to suban , sandstone a	gular fine to and brick	0	_
		0.60 - 1.0	ю в			0.60	143.46		fragmer	nts.				_
									Gravel i	GROUND: G is angular to	subangular f	iravelly san ine to coar	.d. se of	_
									sandsto	one.				_
														_
														_
		1.00	SPT	N=50 (10,14	1/50 for	1.00	143.06			End of	Borehole at 1	000m	1	_
				235mn	n)									_
														-
														_
														_
														_
														_
														_
														_
														_
														_
														_
													2	_
														_
														_
														_
														_
														_
														_
														_
														-
														_
														_
														_
													3	_
	Hole Diam	eter	Casing	Diameter			Chiselling				Inclination	and Orientatio	on	
Depth	Base [Diameter	Depth Base	Diameter	Depth To	p Depth Ba	ise Dura	tion	Tool	Depth Top 0.00	Depth Base 1.00	Inclination 90	Orientation 0	
Rom	arke													
1) Loca	ation CAT	scanned p	rior to drillir	ng.										
	iroundwa	uer encount	iered									1		

3) Installation to 1.0m bgl; 0.5m plain pipe, 0.5m slotted pipe.

GEO # LONSULIANIS							0	0			
Project Name: Blackwood	C	Client: L	idl Great B	ritain Ltd			Date: 21/1	0/2024			
Location: Penmaen Road	C	Contract	tor:				Co-ords: E	318078.00	N196425.	00	
Project No. : 1271.03	0	Crew Na	ame:				Drilling Eq	uipment: Tr	acked Rig		
Borehole Number Ho WS06a	le Type WS	143	Level .57m AoD		Logged UK	Ву	S 1	cale :15	Page	e Number	
Well Strikes	In Situ Testing	g	Depth (m)	Level	Legend		Strat	um Descrip	tion		
Depth (m) Type	e Results	S	(11)	(11)		MADE	GROUND: A	sphalt.			
0.20 ES	50 (25 for 70r for 10mm	nm/50 n)	0.10	143.47 143.22 143.07		MADE (with a h subang concrete MADE (grey gra fine to c	GROUND: A GROUND: R ydrocarbon i ular fine to c e. GROUND: D avelly sand. (isoarse of mu End of l	sphalt. eddish brown odour. Grave oarse of mud ark reddish b Gravel is ang dstone and s Borehole at 0	n sandy grav I is angular i Istone and orown and da jular to suba andstone. 500m	vel to	
Hole Diameter Casir Depth Base Diameter Depth Base	g Diameter a Diameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination Depth Base 0.50	and Orientation Inclination 90	0 Orientati	3 —
Remarks 1) Location CAT scanned prior to dril 2) No groundwater encountered. 3) Borehole terminated at 0.5m bgl d	ling. ue to sampler ref	fusal.			I		1	1		AGS	

3) Borehole terminated at 0.5m bgl due to sampler refusal.
4) Backfilled with arisings.

GEO T LUNSULIA	115								0			
Project Name: Blac	kwood		Client: L	idl Great B.	ritain Ltd			Date: 21/1	0/2024			
Location: Penmaer	Road		Contrac	tor:				Co-ords: E	318105.00	N196413.0	00	
Project No. : 1271.	03		Crew Na	ame:				Drilling Eq	uipment: Tr	acked Rig		
Borehole Numbe WS07	er H	Hole Type WS	143	Level 8.28m AoD		Logged UK	Ву	So 1	cale :15	Page She	e Numbe et 1 of 1	er
Well Water	Sample an	nd In Situ Testin	ng	Depth	Level	Legend		Strati	um Descrin	tion		
Strikes De	oth (m) Ty	vpe Result	ts	(m)	(m)	20gonu			sphalt			
				0.10	143.18					n candy gray		-
	0.25 E	S		0.40	142.88		with a h subangu concrete	ydrocarbon o ular fine to co	odour. Grave	I sandy grav	0	
).55 E	S					MADE (clayey s to coars mudstor	and. Gravel e of asphalt, he and sands	ark brown gr is angular to concrete, bi stone.	avelly slightly subrounded rick fragment	y I fine :s,	
	0.95 [D		0.85	142.43		Firm ora slightly to subro	angeish brow gravelly sanc ounded fine to	n mottled or ly CLAY. Gra o coarse of s	angeish grey avel is suban andstone an	/ gular id	-
	1.00 SF	PT N=50 (3,3/5 295mm	50 for n)	1.00	142.28		mudstor	ne.			/	1 —
								End of f	3orehole at 1	.000m		2
Hole Diameter	Ca er Depth Ba	asing Diameter	Depth To	p Depth Ra	Chiselling	tion	Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	ition
Remarks 1) Location CAT scan 2) No groundwater er	ned prior to d	drilling.	- Deptil 10					0.00	1.00	90		

GEO 7 CON	GEO CONSULTANTS Client: Lidl Great Britain Ltd Date: 21/10/2024												
Project Name	: Blackwood			Client: I	_idl Great B	ritain Ltd			Date: 21/1	0/2024			
Location: Pen	maen Road			Contrac	ctor:				Co-ords: E	318069.00	N196407.	00	
Project No. : '	271.03			Crew N	ame:				Drilling Eq	uipment: T	racked Rig		
Borehole N WS0	umber 3	Hole V	e Type VS	142	Level 2.56m AoD		Logged UK	Ву	Si 1	cale :15	Pag She	e Number eet 1 of 1	
Well Strikes	Sample	and I	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrip	otion		
Survey	Depth (m)	Туре	Resul	ts	(111)	(111)		MADE (GROUND: A	sphalt.			
Vieli Strikes	Depth (m) 0.20 0.35 0.40	Resul	ts)mm/50 m)	(m) 0.12 0.32 0.42	(m) 142.44 142.24 142.14		MADE (gravel w subangu mudstor MADE (Gravel i sandsto	GROUND: A GROUND: D vith a solveni ular fine to ca ne, sandston GROUND: G s angular to ne. End of I	sphalt. ark reddish I t odour. Grav barse of bric e, plastic an rey slightly s subangular Borehole at 0	prown sandy /el is angula k fragments, d asphalt. andy gravel fine to coars .420m	r to e of	2	
Hole Diam Depth Base Remarks 1) Location CA	eter Dep Diameter Dep	Casing th Base to drillir	Diameter Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination Depth Base 0.42	and Orientation Inclination 90	Orientatio 0	

Borehole terminated at 0.42m bgl due to sampler refusal. Borehole relocated to WS08A 20m west.
 Backfilled with arisings.

	50611115								U	Ŭ		
Project Name	: Blackwood			Client: I	_idl Great B	ritain Ltd			Date: 21/1	0/2024		
Location: Pen	maen Road			Contrac	tor:				Co-ords: E	318052.00	N196402.	00
Project No. : 1	271.03			Crew N	ame:				Drilling Eq	uipment: Tr	acked Rig	
Borehole N	umber	Hole	Туре		Level		Logged	Ву	S	cale	Page	e Number
WS08	a	V	VS	142	2.45m AoD		UK		1	:18	She	eet 1 of 1
Well Strikes	Sampl	e and li	n Situ Testir	ng	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion	
	Deptil (III)	Type	Resul	ເຣ	. ,	. ,		Dark br	own sandy s	ilt with freque	ent rootlets	
	0.35	ES			0.16	142.29		(TOPSC MADE clayeys angular mudsto subang	JIL). <i>ile membra</i> GROUND: B sand with a h to subangul ne and brick ular sandsto	ne between rownish grey nigh cobble cr ar fine to coa fragments. C ne.	<u>0.15 and</u> gravelly slig ontent. Grav rse of sands obbles of	0.16m./ htty el is stone, - - - - - - - - - - - - -
	1.00	SPT	N=13 (3,3/3	3,3,3,4)	1.15	141.30		MADE gravelly angular fragmer angular	GROUND: V / clay with oc to subangul nts, sandstor sandstone.	ery soft brow casional cob ar fine to coa ne and mudst	n slightly sa bles. Gravel rse of brick one. Cobble	ndy is
	2.00	N=47 (8,12/13,14	, 4,14,6)	2.30	140.15		Stiff belo	ow 2m.	prangeish brc el is angular ne.	wn slightly s to subangul		
	2.50 3.00	N=50 (8,10 250mr	/50 for n)	3.00	139.45		Very sof	ft below 2.4 End of	5m Borehole at 3.	000m	3	
Hole Diame Depth Base I Remarks 1) Location CAT 2) No groundwe 3) Brook Filled with	eter Dep Diameter Dep	Casing oth Base r to drillir ed.	Diameter Diameter Ng.	Depth To	op Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination . Depth Base 3.00	and Orientation Inclination 90	Orientation 0

GED T CONS	DULIANIS								0	- J			
Project Name:	Blackwood			Client: I	idl Great B	ritain Ltd			Date: 21/1	0/2024			
Location: Penr	maen Road			Contrac	tor:				Co-ords: E	318087.00	N196407.	00	
Project No. : 1	271.03			Crew N	ame:				Drilling Eq	uipment: Tr	acked Rig		
Borehole Nu WS09	umber)	Hole V	e Type VS	142	Level 2.43m AoD		Logged UK	Ву	Solution Solution	cale :15	Pag Sh	e Numbe eet 1 of 1	er
Well Strikes	Sample	and I	n Situ Testir	ng	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
	Depth (m)	Туре	Resul	ts	(,	()		MADE	GROUND: A	sphalt.			
	0.50	SPT	50 (25 for 11 for 60m	5mm/50 m)	0.10	142.33		MADE (MADE (with a h subang concret	GROUND: A: GROUND: R ydrocarbon o ular fine to ca e. End of I	sphalt. eddish brown odour. Grave barse of muc	n sandy gra I is angular Istone and	vel to	
Hole Diame Depth Base D	ter Dep	Casing th Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	tion	Tool	Depth Top 0.00	Inclination Depth Base 0.50	and Orientatio Inclination 90	n Orienta 0	- - - - - - - - - - - - - - - - - - -
Remarks 1) Location CAT 2) No groundwa 3) Borehole tern	scanned prior ter encountere ninated at 0.5m	to drillir d. ı bgl du	ng. e to sampler re	efusal. Re	elocated to W	/S09A 10r	n south.		1	1		AGS	

Borehole terminated at 0.5m bgl due to sampler refusal. Relocated to WS09A 10m south.
 Backfilled with arisings.

GEO F LUN	ISULIANIS									0			
Project Name	: Blackwood			Client: I	idl Great B	ritain Ltd	l		Date: 21/1	0/2024			
Location: Per	nmaen Road			Contrac	tor:				Co-ords: E	318105.00) N196395.	00	
Project No. :	1271.03			Crew N	ame:				Drilling Eq	uipment: T	racked Rig		
Borehole N	lumber	Hole	е Туре		Level		Logged	Ву	S	cale	Page	e Numbe	ər
WS09)a	V	VS	142	2.96m AoD		UK		1	:15	She	et 1 of 1	
Well Water Strikes	Sample	and I	n Situ Testir	ng te	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
Well Strikes	0.90 1.00 1.10 - 1.80	D SPT B	N=17 (2,2/4 N=50 (8,9/ 265mr	rg ts (50 for n)	0.85 1.10 2.00	Level (m) 142.11 141.86		Firm brossandsto	Strat GROUND: F sh brown sliv is subangula one, brick fra ownish grey CLAY. The below 1m angeish brow r sandy CLA' ular fine to c	um Descrip irm brown o ghtly gravelly r fine to coa gments and occasionally	ccasionally n y sandy clay. rse of mudste plastic. mottled brow ght grey sligh angular to dstone and c	vn tly :oal.	
Hole Diam	heter	Casing	Diameter			Chiselling				Inclination	and Orientation	1	3 —
Depth Base	Diameter Dep	oth Base	Diameter	Depth To	op Depth Ba	se Dura	tion	Tool	Depth Top 0.00	Depth Base 2.00	Inclination 90	Orienta 0	ation
Remarks	T scanned prior	to drillir	na										
2) No groundw	ater encountere	ed.	·J.									ACS	

		DA						Ro	tar	У	Сс	ore	Log		
Projec	t Name	Blackwoo	bd			Clie	ent: L	idl Great B	Britain Lt	d		C)ate: 20/11/2024 - 22	2/11/2024	
Locati	on: Pen	maen Roa	ıd			Со	ntract	or:				c	Co-ords: E318063.00	0 N196425.00	
Projec	t No. : 1	271.02				Cre	w Na	ime:				C	Prilling Equipment: C	commachio GE	0205
Bor	ehole N	umber	Hol	е Тур	е			Level		Lo	gged E	Зу	Scale	Page N	umber
	RBH0	1 Donth	Tune		oring	e la	143	.37m AoD			PS		1:50	Sheet	1 of 3
Well	Water	(m)	/FI	TCR	SCR		Recove (SPT	(m)	(m)	Leg	end		Stratum Descri	ption	
Hole Depth Bas		Casing D r Depth Base	Type/F iameter Diameter De	TCR	SCR I		V(SPT) J ation	2.70 Tool Dep	Itolinat		Orienta	tion Direntation D	and GRAVEL (Drillers d	escription)	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -
1) Ro 2) Any 3) No	tary op y groun loss of	en-holed dwater s flush rec	from Gr trikes we corded.	ound ere m	Leve aske	l to 3 d by o	0.00 drillin	m bgl. g flush.						A	GS

RE		DA SULTANTS						Rc	otar	y Co	ore	Log				
Projec	t Name:	Blackwo	bod			(Client: L	idl Great E	Britain Lto			Date: 20/11/20	24 - 22/ ⁻	11/2024		
Locat	on: Peni	maen Ro	ad			(Contrac	tor:				Co-ords: E318	063.00 1	N19642	5.00	
Projec	ct No. : 1	271.02				(Crew N	ame:				Drilling Equipm	ent: Co	mmach	o GEO2	05
Bor	ehole N	umber	l	Hole T	ype			Level		Logged	Ву	Scale		Pa	ige Numl	ber
	RBH0 ⁻	1	 ·	RO	<u> </u>		143	3.37m AoD		PS		1:50		S	heet 2 of	3
Well	Water	Dept (m)	n 1y	/ре FI _{тс}		I g RQE	Diamete Recove (SPT)	Depth (m)	(m)	Legend		Stratum E	Descript	tion		
											SAND) and GRAVEL (Drillers	Descrip	tion)	=
																-
																-
								11.00	132.37		Interh	edded SII TST(NE and			11 -
											(Drille	rs description)		MODO	IONE	
																-
																-
																12 -
																-
																13 -
																-
																-
																-
																15 _
																-
																16 -
																-
																-
																17 -
																-
																18 -
																19 —
																-
					_											20 -
Hole	Diameter	Casing	Ty Diameter	pe/FI TC	RSCR	RQD Chise	D D/R/(SPT)		Inclinatio	on and Orient	ation		Drilling	g Flush		
Depth Ba	e Diameter	r Depth Base	Diameter	Depth T	op Depth	Base	Duration	Tool Dep	oth Top Depth	Base Inclinatio	n Orientation	Depth Top Depth Base	Туре	Colour	Min (%)	Max (%)
Rom	arke															
1) Rc 2) An 3) Nc	a rs otary ope y groun o loss of	en-holeo dwater flush re	d from strikes cordeo	Grour were I.	id Lev maski	el to ed b	o 30.00 oy drillir	im bgl. ng flush.							AG	S
4) Ba	ckfilled	with be	ntonite	and c	emen	t up	on con	npletion.								

RE		DA						Ro	otar	y Co	ore	Log			
Projec	t Name:	Blackwood	ł			C	Client: L	idl Great I	Britain Ltd			Date: 20/11/202	24 - 22/11/20	024	
Locat	on: Pen	maen Road				С	Contrac	tor:				Co-ords: E3180	063.00 N196	3425.00	
Projec	ct No. : 1	271.02				С	crew Na	ame:				Drilling Equipm	ent: Comma	achio GEO2	05
Bor	ehole N	umber	Hol	е Тур	е			Level		Logged	Ву	Scale		Page Num	ber
	RBH0	1 Denth	Type		orin		143 	0.37m AOL				1:50		Sheet 3 of	13
Well	Water	(m)	/FI	TCR	SCR	9 RQD	Diame Recov	(m)	(m)	Legend		Stratum D	escription		
											Interbe (Drille	edded SILTSTO	NE and MU	DSTONE	=
															-
															-
															21 -
															-
															22 -
															23 -
															-
															24 —
															-
															25 —
															-
															26 -
															-
															-
															27 -
															-
															-
															28 -
															-
															-
															29 —
															-
								20.00	140.07						
Hole	Diameter	Casing Dia	Type/F	I TCR	SCR	RQD	D/R/(SPT)	30.00		n and Oright	ation	End of Boreho	Drilling Eluc		30 -
Depth Ba	se Diamete	r Depth Base D	ameter De	pth Top	Depth B	ase [Duration	Tool De	pth Top Depth	Base Inclination	n Orientation	Depth Top Depth Base	Type Col	our Min (%)	Max (%)
D															
Rema 1) Ro	arks Itary op	en-holed f	rom Gr	ound	Leve	el to	30.00	m bal.							
2) An 3) No	y groun	dwater str flush reco	ikes we orded.	ere m	aske	ed by	y drillir	ng flush.						AG	S

		DA					Ro	otar	y Co	ore	Log		
Projec	t Name	Blackwo	od			Client	: Lidl Great B	Britain Lto	ł		Date: 22/11/2024 - 25	/11/2024	
Locati	on: Pen	maen Roa	d			Contra	actor:				Co-ords: E318097.00	N196424.00	
Projec	t No. : 1	271.02				Crew	Name:				Drilling Equipment: Co	ommachio GEO2	05
Bor	ehole N	umber	Hol	е Тур	e		Level		Logged I	Ву	Scale	Page Num	ber
	RBH0	2 Dopth	Type		oring	ן קלים בי	43.69m AoD		PS		1:50	Sheet 1 of	f 3
Well	Water	(m)	/FI	TCR	SCR		(m)	(m)	Legend		Stratum Descrip	otion	
Hole Depth Bas	Diameter Piameter Diameter	(m)	Type/F iameter Diameter De	TCR pth Top	SCR I	RQD D/R/(SP hiselling ase Duration	(m) 3.00 9.00 	140.69		MADE SAND	GROUND (Drillers Determined in the prime of the prima of the prima of the prime of the prime of the prime of the prim	a Description)	1
1) Ro 2) An 3) No	tary op y groun loss of	en-holed dwater s flush rec	from Gro trikes we corded.	ound ere m	Leve laske	el to 30.0 d by dril	00m bgl. ling flush.					AG	յ Տ

RE		DA SULTANTS						Ro	tar	y Co	ore	Log			
Projec	t Name	: Blackwood				С	lient: L	idl Great B	Britain Lto			Date: 22/11/202	24 - 25/11/2	2024	
Locati	on: Pen	maen Road				С	ontrac	tor:				Co-ords: E3180	097.00 N19	96424.00	
Projec	xt No. : 1	271.02				С	rew Na	ame:				Drilling Equipm	ent: Comm	nachio GEO2	05
Bor	ehole N	umber	Hole	э Тур	e		4.40			Logged	Ву	Scale		Page Numb	ber
	RBHU	∠ Denth	Type	0 C	orin	a	143	Depth	l evel	P5		1:50		Sneet 2 of	3
Well	Water	(m)	/FI	TCR	SCR	RQD	Diame Recov (SP1	(m)	(m)	Legend		Stratum D	escription)	1	
											Interb (Drille	edded SILTSTO	NE and M	UDSTONE	=
											(21				-
															=
															11 -
															12 -
															-
															-
															-
															13 -
															-
															14 -
															15 -
															-
															-
															16 —
															-
															17 _
															18 -
															19 —
															-
															=
			Turo/E/	TOP	900	ROD									20 -
Hole	Diameter	Casing Diame	ter	т.ск 	С	hisell	ing		Inclinatio	n and Orient	ation		Drilling Flu	ush	
Depth Ba	e Diamete	r Depth Base Diam	eter Dep	oth Top	Depth B	ase [Juration	Iool Dep	th Iop Depth	Base Inclinatio	n Orientation	Depth lop Depth Base	Iype C	000ur Min (%)	Max (%)
Rem	arks														
1) Rc 2) An	tary op y grour	en-holed fro idwater strik	m Gro es wei	und re m	Leve aske	el to d by	30.00 / drillir	m bgl. ıg flush.						AG	S
	ckfilled	with benton	ito an	1 cer	nont	unc	n com	nletion							

RE								Ro	otar	y Co	ore	Log			
Projec	t Name:	Blackwood	ł			С	Client: L	idl Great	Britain Ltd			Date: 22/11/202	24 - 25/11/2	024	
Locat	on: Peni	naen Road				С	Contrac	tor:				Co-ords: E3180	097.00 N196	3424.00	
Projec	ct No. : 1	271.02				С	crew Na	ame:				Drilling Equipm	ent: Comma	achio GEO2	205
Bor	ehole N	umber	Hol	е Тур	е			Level		Logged	Ву	Scale		Page Num	iber
	RBH0	2 Denth	Type		orin		143 	Denth				1:50		Sheet 3 o	13
Well	Water	(m)	/FI	TCR	SCR	9 RQD	Diame Recovi (SPT	(m)	(m)	Legend		Stratum D	escription		
											Interbe (Drille	edded SILTSTO	NE and MU	DSTONE	-
															-
															-
															21 –
															-
															-
															22
															22 -
															_
															-
															23 -
															24 -
															-
															-
															-
															25 —
															-
															-
															26 -
															-
															27 —
															_
															-
															28 -
															-
															-
															20 -
															29 -
															-
															-
			Type/F	I TCR	SCR	RQD	D/R/(SPT)	30.00	113.69			End of Boreho	ole at 30.000m	1	30 -
Hole Depth Ba	Diameter Be Diameter	Casing Dia	meter De	pth Top	Depth B	hisell Base [ing Duration	Tool De	Inclinatio	n and Orienta	ation n Orientation	Depth Top Depth Base	Drilling Flue	sh Iour Min (%)	Max (%)
, . 24					,	-							, 00		
Rema	arks	1 1	I		I				I	I		1	<u> </u>		
1) Ro 2) An	tary op y groun	en-holed f dwater str	rom Gr ikes we	ound ere m	Leve aske	el to ed by	30.00 y drillir	m bgl. 1g flush.						AG	S
	1000 01			-1										1	

RE	EO T CONS	DA					Ro	otar	y Co	ore Log	
Proje	ct Name:	Blackwo	od			Client:	Lidl Great I	Britain Lto	ł	Date: 25/11/2024 - 26/11/2024	
Locat	ion: Pen	maen Roa	ad			Contra	ctor:			Co-ords: E318079.00 N196384.0	0
Proje	ct No. : 1	271.02				Crew N	Name:			Drilling Equipment: Commachio G	EO205
Boi	Rehole N	umber 3	Н	ole Typ	be	1/			Logged	By Scale Page	Number
\/_		Depth	n Ty		Coring	eter very	Depth	Level	Lanand		1015
weil	vvaler	(m)	/F	TCR	SCR R	CD Diam Reco (SF	i (m)	(m)	Legend		
		3.00	E	S			3.00	137.54		MADE GROUND with a strong hydrocarbon odour (Drillers description) SAND and GRAVEL with hydrocarbon odour (Drillers description)	1
Hole Depth Ba	Diameter se Diamete	8.00 r Depth Base	Type Nameter Diameter	S a/FI TCR Depth Top	SCR R Ch Depth Bas	QD D/R/(SP1 iselling ie Duration	7.60	Inclinate oth Top Depth	on and Oriente Base Inclination	Interbedded SILTSTONE and MUDSTO (Drillers description)	NE 8
1) Rc 2) An 3) Nc	arks otary op ly groun o loss of	en-holed dwater s	from G trikes v	Ground vere m	l Level nasked	to 30.0 by drill	0m bgl. ing flush.				AGS

RE		DA SULTANTS						Ro	tar	y Co	ore	Log	J				
Projec	t Name	: Blackwood				С	lient: L	idl Great E	Britain Ltd			Date: 25/1 ²	1/2024	- 26/1	1/202	4	
Locat	on: Pen	maen Road				С	Contrac	tor:				Co-ords: E	31807	9.00 N	1963	84.00	
Projec	t No. : ′	271.02				С	rew Na	ame:				Drilling Equ	uipmer	nt: Cor	nmacł	nio GEO2	205
Bor	ehole N	umber	Hole	э Тур	е			Level		Logged I	Ву	Sc	cale		Ρ	age Num	ber
	RBH0	3 Danath	<u>ا</u>	70 		-	140 ਙ <u>੨</u>	.54m AoD	11	PS		1:	:50		5	Sheet 2 o	of 3
Well	Water	(m)	/FI	TCR	SCR	g RQD	Diamet Recove (SPT)	(m)	(m)	Legend		Stratu	ım De	scripti	ion		
											Interb	edded SILT	STON	E and	MUD	STONE	
											(Drille	rs descriptio	on)				-
																	-
																	11 -
																	-
																	-
																	-
																	12 -
																	-
																	-
																	13 _
																	-
																	14 -
																	-
																	15 —
																	-
																	16 -
																	-
																	-
																	18 _
																	-
																	-
																	19 —
																	-
			Type/FI	TCR	SCR	RQD	D/R/(SPT)					1					20 —
Hole Depth Ba	Diameter e Diamete	Casing Dian	neter meter Der	oth Top	C Depth E	Chisell Base [ing Duration	Tool Dep	Inclinatio	on and Orienta Base Inclination	ation n Orientation	Depth Top Dept	h Base	Drilling Type	Flush Colour	Min (%)	Max (%)
				_													
Rema	arks	on holed f	om 0				20.00	mhal									
1) RC 2) An	vary op y grour	en-noied fr idwater stri	kes we	re m	∟eve aske	ei to ed by	30.00 drillin	in ogi. Ig flush.								AG	S
3) No	loss of	flush reco	ded.	d cor	nont			nletion								AU	

		DA SULTANTS						Ro	otar	у С	ore	Log			
Projec	t Name	: Blackwood				С	lient: L	idl Great	Britain Lt	d		Date: 25/11/20	24 - 26/11/2	024	
Locati	on: Pen	maen Road				С	Contrac	tor:				Co-ords: E318	079.00 N19	6384.00	
Projec	xt No. : 1	271.02				С	rew N	ame:				Drilling Equipm	ent: Comma	achio GEO2	05
Bor	ehole N	umber	Hol	е Тур	e			Level		Logge	d By	Scale		Page Num	ber
	RBH0	3	T	RO		-	140 ਙ ਣ).54m Aol	D	PS	8	1:50		Sheet 3 of	f 3
Well	Water	(m)	/FI		SCR	y RQD	Diamet Recove (SPT)	(m)	(m)	Legend	b	Stratum E	Description		
											Interb	edded SILTSTC	NE and MU	IDSTONE	
											(Drille	ers description)			-
															-
															21 —
															-
															-
															-
															22 -
															-
															-
															23 -
															-
															-
															24 —
															-
															-
															25 —
															-
															-
															26 —
															-
															27 -
															-
															-
															28 _
															-
															-
															29 —
															-
			Type/F	I TCR	SCR	RQD	D/R/(SPT)	30.00	110.54			End of Boreh	ole at 30.000m	1	30 -
Hole Depth Bas	Diameter e Diamete	Casing Diam	neter De	pth Top	C Depth B	hisell	ing Duration	Tool D	Inclinat epth Top Dept	ion and Orie h Base Inclina	ntation tion Orientatio	n Depth Top Depth Base	Drilling Flue Type Co	sh Iour Min (%)	Max (%)
Rema 1) Ro	arks tary op	en-holed fro	om Gr	ound	Leve	el to	30.00	m bgl.					`		
2) An 3) No	loss of	dwater stril	ded.	ere m	iaske	a pì	y drillir	ig flush.						AG	5

APPENDIX A SPT Hammer Energy Test Certificate

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

ARCHWAY ENGINEERING (UK) LTD **AINLEYS INDUSTRIAL ESTATE** ELLAND WEST YORKSHIRE HX5 9JP

Instrumented Rod Data

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.5
Assumed Modulus Ea (GPa):	208
Accelerometer No.1:	72572
Accelerometer No.2:	72757

SPT Hammer Ref:	110.20
Test Date:	01/09/2023
Report Date:	01/09/2023
File Name:	110.20.spt
Test Operator:	CM

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 10.0

Comments / Location

3

2

1

0

0

2 3

m/sec

REGIONAL DRILLING LTD - 86346

Time (ms)

5 6

4

7 8 9 10

Velocity

Calculations

Energy Ratio E, (%	73		
Measured Energy Emeas	(J):	346	
Theoretical Energy Etheor	(J):	473	
Area of Rod A (mm2):		970	

73

The recommended calibration interval is 12 months

Signed: C.McCLUSKEY Title: FITTER

APPENDIX B

Dynamic Cone Penetrometer (DCP) Test Results

		TR	L Dynamic	Cone Pene	tromet	er Te	st R	esults					RE	CON	SULT	ANTS
Client:	Lidl Grea	t Britain Ltd	Site Location:	Blackwood		Test N	0:	CBR1	Location:		318052	196480				
Project No:	12	71.03	Date:	21.10.24		Start D	Depth	Surface	Test Stra	ta:	Sandy g	ravel				
	1	Log10(CBR)	= 2.480-1.05	7 x Log10(m	m/blow)				Weather		Dry Sunr	ny				
No of Blows	Depth Reading	Penetration/ Blowmm	CBR %					Estir	mated C	BR	%					
0	265	0	17.2	ہ ا ⁰	10	2	0	30	40 5	0	60	70	80	90	100	0
2	280	10.0	26.5													
3 4	302 311	12.0 9.0	21.8 29.6													
6	313	1.0	302.0													
9	327	7.0	38.6													
10 11	338 357	11.0 19.0	23.9 13.4	100												
12	367 374	10.0	26.5													
14	381	7.0	38.6													
15 16	393 411	12.0 18.0	21.8 14.2													
17	425	14.0	18.6													
19	451	7.0	38.6													
20 21	456 461	5.0 5.0	55.1 55.1	200												
22	465	4.0	69.8													
23	480	9.0	29.6													
25 26	486 490	6.0 4.0	45.4 69.8													
27	496	6.0	45.4			~										
29	506	5.0	55.1	300			<									
30 31	514 520	8.0 6.0	33.5 45.4						•				-		_	
32	530	10.0	26.5				2									
34	543	6.0	45.4			<										
35 36	550 555	7.0 5.0	38.6 55.1					\supset	3							
37	560	5.0	55.1	400			~									
39	567	3.0	94.6			$\boldsymbol{<}$										
40 41	574 580	7.0 6.0	38.6 45.4			1										
42	586	6.0	45.4	-		«				-						
43 44	595 602	9.0 7.0	29.6 38.6						-	-		-				
45 46	608 616	6.0 8.0	45.4 33.5	(m m)								-				
47	623	7.0	38.6	Depth 200				-								
48	632	5.0	55.1													
50 51	640 650	8.0 10.0	33.5 26.5						\geq							
52	670	20.0	12.7							6		-	_	_		
54	726	24.0	10.5													
55 56	735 745	9.0 10.0	29.6 26.5	600				<	5							
57	754	9.0	29.6					<	-			_				
59	761	2.0	145.1					Ja								
60 61	765 770	4.0 5.0	69.8 55.1													
62	773	3.0	94.6			T										
63 64	777	2.0	145.1	700												
65 66	779 782	2.0 3.0	145.1 94.6													
67 6°	785	3.0	94.6		Ĩ			2								
69	791	2.0	145.1					~		-						
70 71	795 798	4.0 3.0	69.8 94.6							•	-	-				
72	800	2.0	145.1	800								=				
74	802	3.0	94.6	000						•		-				
75 76	810 812	5.0 2.0	55.1 145.1					_	0							
77	814	2.0	145.1 94 F			T										
79	821	4.0	69.8			•		•		-		-				
80 81	828 845	7.0 17.0	38.6 15.1									-				
82	861	16.0	16.1	900					•							
83 84	873	4.0	33.5													
85 86	878 882	5.0 4.0	55.1 69.8													
87	886	4.0	69.8													
88 89	895 902	9.0 7.0	29.6 38.6													
90	910	8.0	33.5	1000												
Note: 0	D tost · ·	artakan	via la+'	£ 14/5 1 -	wist!		nc '	d k-	ora-l ·							
Notes: DC	r test unde	ertaken with	in location o	r WS1 once e	existing	surtaci	ng h	a been o	ored out							
Tortad	11 Kha-						C	ockad -	DDiala	6.67						
Date:	21.10.202	4					ch	CLKED Dy Date:	. г ыскіп : 26.11.2	50N 024						

		TR	L Dynamic	Cone Pene	etromet	er Test F	lesults			REA	CONSULTANTS
Client:	Lidl Great	t Britain Ltd	Site Location:	Blackwood		Test No:	CBR3	Location:	318100 196446	5	
Project No:	12	/1.03	Date:	21.10.24		Start Dept	n: Surface	Test Strata:	Sandy gravel		
	L	.og10(CBR)	= 2.480-1.05	7 x Log10(m	nm/blow)			Weather:	Dry Sunny		
No of	Depth Reading	Penetration/	CBR %				Fst	imated CBR	2 %		
Blows	164	Blow mm			0 10	20	30	40 50	60 70	80	90 100
1	189	25.0	10.1	0							
2	194	5.0	55.1								
3	199	5.0	55.1								
4 5	205	2.0	145.1								
6	210	5.0	55.1	100							
7	211	1.0	302.0								
8	212	1.0	302.0								
9	215	3.0	94.6								
10	216	1.0	302.0						_		
11	218	2.0	145.1	200					€		
15	219	0.3	463.6						•		•
17	225	4.0	69.8					-	2		
18	227	2.0	145.1								
19	228	1.0	302.0								
20	234	6.0	45.4	300							•
22	236	1.0	302.0								
23	237	1.0	302.0								
24	241	3.0	94.6								
26	246	2.0	145.1								
27	250	4.0	69.8	400							
29	251	0.5	628.3								
30	254	3.0	94.6								
31	257	3.0	94.6	-							
32	259	2.0	145.1	L L L L L L L L L L L L L L L L L L L							
34	263	2.0	145.1	4t 500							
35	265	2.0	145.1	De							
36	266	1.0	302.0								
37	269	3.0	94.6								
39	270	0.5	628.3								
42	272	0.7	463.6	600							
43	275	3.0	94.6 302.0								
45	279	3.0	94.6								
47	280	0.5	628.3								
48	283	3.0	94.6	700							
49	284	1.0	302.0	700							
51	286	1.0	302.0								
52	289	3.0	94.6 145 1								
54	293	2.0	145.1								
55	294	1.0	302.0	800							
56	295	1.0	302.0								
58	297	1.0	302.0								
59	299	2.0	145.1								
60 C1	300	1.0	302.0								
62	302	2.0	94.6	900							
63	306	1.0	302.0								
64	307	1.0	302.0								
65	308	1.0	302.0								
68	309	0.3	964.5								
70	310	0.5	628.3	1000							
Notes: DCF	etest unde	ertaken with	in location o	f WS5 once	existing s	surfacing h	nad been o	cored out.			
Tested by	U Khan					C	hecked by	: P Dickinson			
Date:	21.10.202	4					Date	: 26.11.2024			

		TR	L Dynamic	Cone Pen	etromet	er Test R	esults				
Client:	Lidl Great	t Britain Ltd	Site Location:	Blackwood		Test No:	CBR4	Location:	318105 196413	3	
Project No:	12	71.03	Date:	21.10.24		Start Depth	Surface	Test Strata:	Sandy gravel		
	L	.og10(CBR)	= 2.480-1.05	7 x Log10(n	nm/blow)			Weather:	Dry Sunny		
No of Blows	Depth Reading mm	Penetration/ Blow mm	CBR %				Est	imated CBR	8 %		
0 1 2 3 4 7 8 9 10 11 19 20 25 26 Notes: DCI	190 199 204 206 211 213 214 216 217 221 225 228 232 233	0 9.0 5.0 2.0 5.0 0.7 1.0 2.0 1.0 4.0 0.5 3.0 0.8 1.0	29.6 55.1 145.1 55.1 463.6 302.0 145.1 302.0 69.8 628.3 94.6 382.3 302.0	0 100 200 300 400 ()) 100 f WS7 once	0 10	20	30	40 50			
Date:	21.10.202	4				C	Date	: 26.11.2024			

APPENDIX C Laboratory Chemical Analysis

Remada Ltd Forward House 17 High Street Henley-in-Arden Warwickshire B955AA i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: info@remada.co.uk peter.searing@remada.co.uk

Analytical Report Number : 24-049681

Project / Site name:	Blackwood	Samples received on:	23/10/2024
Your job number:	1271.03	Samples instructed on/ Analysis started on:	24/10/2024
Your order number:	1271.03	Analysis completed by:	31/10/2024
Report Issue Number:	1	Report issued on:	31/10/2024
Samples Analysed:	8 soil samples		

Signed:

Anna Goc PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-049681

Project / Site name: Blackwood Your Order No: 1271.03

TOUL	order	NO:	12/	1.03

Lab Sample Number				357887	357888	357889	357890	357891
Sample Reference				WS01	WS034	WS04	WS05	WS05
Sample Number				None Supplied				
Denth (m)				0.30	0.50	0.60	0.35	1.80
Date Sampled				22/10/2024	22/10/2024	22/10/2024	22/10/2024	22/10/2024
Time Taken				Nono Supplied				
			-	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	est Accreditation Status					
Stone Contant	0/6	0.1	NONE	47.6	44.7	20 F	F2 0	90 F
Stone Content	70	0.1	NONE	47.0	44./	29.5	53.9	89.5
Total mass of cample received	/0 ka	0.01	NONE	4.7	6.7	9.7	4.3	5.1
Total mass of sample received	Ng	011	HOHE	0.8	1.3	0.8	0.8	1.1
Ashestos								
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	-	-
Asbestos Analyst ID	N/A	N/A	N/A	МЈИ	MJN	MJN	-	-
General Inorganics	nH Units	N/A	MCERTS	7 9	76	8.2	_	
Total Ovanido	ma/ka	1	MCERTS	7.0	7.0	6.2	-	-
Eraction Organic Carbon (EOC) Automated	N/A	0.001	MCERTS	0.017	0.012	0.0077	-	-
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.39	< 0.05	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	0.46	0.14	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	0.86	< 0.80	< 0.80	-	-

Analytical Report Number: 24-049681 Project / Site name: Blackwood

Your Order No: 1271.03

Tour Order No: 12/1.0.

Lab Sample Number				357887	357888	357889	357890	357891
Sample Reference				WS01	WS03A	WS04	WS05	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.50	0.60	0.35	1.80
Date Sampled				22/10/2024	22/10/2024	22/10/2024	22/10/2024	22/10/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
	1		코	Holle Supplied	Hone Supplied	Hone Supplied	Hone Supplied	Holle Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	est Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	51	11	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.92	1.9	0.77	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	1.1	0.7	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.3	< 0.2	0.3	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	-	-
Chromium (III)	mg/kg	1	NONE	19	26	16	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	26	16	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	14	31	14	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	13	33	15	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	38	36	26	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	23	40	21	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	71	62	61	-	-
Petroleum Hydrocarbons								
TPHCWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.01	MCERTS	0.17	< 0.010	0.029	< 0.010	< 0.010
TPHCWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	1	< 1.0	< 1.0	< 1.0	< 1.0
TPHCWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	< 2.0	2.2	< 2.0	2.5	< 2.0
TPHCWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPHCWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	25	12	< 8.0	11	9.1
TPHCWG - Aliphauc >EC3 - EC33 EH_CU+HS_1D_AL	mg/kg	10	NONE	26	14	< 10	13	< 10
TRHCWG - Aromatic > ECE - ECZ us up up	ma/ka	0.01	MCEDTS	. 0.010	. 0.010	- 0.010	- 0.010	- 0.010
	ma/ka	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aromatic > EC3 - EC10 μ_{s} in an	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
TPHCWG - Aromatic > EC10 - EC12 EW CU ID AR	mg/kg	1	MCERTS	< 1.0	< 0.020	< 0.020	< 0.020	< 0.020
TPHCWG - Aromatic >EC12 - EC16 FH CU ID AR	ma/ka	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPHCWG - Aromatic >EC16 - EC21 FH CU ID AR	ma/ka	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPHCWG - Aromatic >EC21 - EC35 EH CU 1D AR	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
VOCs						× 10		× 10
MTRE (Methyl Tertiany Bubyl Ether)	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Renzene	ug/ka	5	MCERTS	~ 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	ua/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Fthylbenzene	µg/ka	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
n & m-Xvlene	µg/ka	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
o-Xvlene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 24-049681

Project / Site name: Blackwood Your Order No: 1271.03

1 Oui	oruer	140.	12/	T.0

Lab Sample Number				357892	357893	357894
Sample Reference	WS06	WS07	WS08			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.15	0.25	0.20			
Date Sampled	22/10/2024	22/10/2024	22/10/2024			
Time Taken				None Supplied	None Supplied	None Supplied
			코			
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	est Accreditation Status			
Stope Content	%	0.1	NONE	20.0	20.9	47.4
Meisture Content	%	0.01	NONE	39.9	39.0	47.4
Total mass of sample received	ka	0.1	NONE	4.9	3./	5.5
Total mass of sample received	5	-	-	1.1	1.3	1.1
Ashestos						
Asbestos in Soil Detected/Not Detected	Type	N/A	ISO 17025	-	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	-	MIN	MIN
General Inorganics	al I I aita	NI/A	MCEDIC			
pH (L099)	pH Units	N/A	MCERTS	-	9.3	8.6
	mg/kg	1	MCEDIC	-	< 1.0	1.4
Fraction Organic Carbon (FOC) Automated	N/A	0.001	HEERIS	-	0.012	0.0072
Total Phenois						
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	0.08
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	0.15	0.16
Fluorene	mg/kg	0.05	MCERTS	-	0.06	0.08
Phenanthrene	mg/kg	0.05	MCERTS	-	0.35	0.75
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	0.17
Fluoranthene	mg/kg	0.05	MCERTS	-	0.59	2.1
Pyrene	mg/kg	0.05	MCERTS	-	0.67	1.7
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	0.32	1.3
Chrysene	mg/kg	0.05	MCERTS	-	0.31	1.5
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	0.36	2.4
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	0.17	0.75
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	0.29	1.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	0.14	1.1
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	0.26
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	0.17	1.2
Total PAH						
Speciated Total EPA-16 PAHs	mg/kq	0.8	ISO 17025	_	2 50	15.1

Analytical Report Number: 24-049681 Project / Site name: Blackwood

Your Order No: 1271.03

1001 01001 110. 127 1.0.

Lab Sample Number	357892	357893	357894			
Sample Reference	WS06	WS07	WS08			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.15	0.25	0.20			
Date Sampled				22/10/2024	22/10/2024	22/10/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	3.5	10
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	-	0.14	0.48
Boron (water soluble)	mg/kg	0.2	MCERTS	-	0.5	0.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	1.8	61
Chromium (hexavalent)	mg/kg	1.8	MCERTS	-	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	-	9	37
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	9	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	14	710
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	43	160
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	-	3.7	16
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	-	5.4	14
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	-	89	360
Petroleum Hydrocarbons						
TPHEWG - Aliphatic >ELS - EL6 HS_1D_AL	mg/Kg	0.01	MCEDIC	< 0.010	< 0.010	< 0.010
TPHCWG - Allphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010
TPHCWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/кg	0.01	MCERTS	0.075	0.15	0.45
TPHCWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/кg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPHCWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/кg	2	MCERTS	< 2.0	2.9	< 2.0
TPHCWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	ð o	MCERTS	< 8.0	< 8.0	< 8.0
TPHCWG - Aliphatic >EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	0 10	NONE	26	/3	24
TELEVING - AILPHAUC ZECS - ECSS EH_CU+HS_1D_AL	iiig/ Kg	10	NONL	26	/6	24
	ma/ka	0.01	MCERTS	< 0.010	< 0.010	< 0.010
TPHCWG - $\Delta romatic > EC7 - EC8 + s_1D_AR$	mg/kg	0.01	MCERTS	< 0.010	< 0.010	< 0.010
TPHCWG - Aromatic >EC8 - EC10 Hs to AR	mg/kg	0.02	MCERTS	< 0.010	< 0.010	< 0.010

TPHCWG - Aromatic >EC8 - EC10 Hs_1D_AR	mg/kg	0.02	MCERTS	< 0.020	< 0.020	< 0.020
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	< 10
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	17	130	17
TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	17	130	17

VOCs

VOCS						
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
p & m-Xylene	µg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
o-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 24-049681 Project / Site name: Blackwood

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
357887	WS01	None Supplied	0.3	Brown sand with clinker and stones
357888	WS03A	None Supplied	0.5	Brown clay and sand with gravel and stones
357889	WS04	None Supplied	0.6	Brown clay and sand with gravel and stones
357890	WS05	None Supplied	0.35	Brown sand with gravel and stones
357891	WS05	None Supplied	1.8	Non Soil. ^{*g}
357892	WS06	None Supplied	0.15	Brown clay and sand with gravel and stones
357893	WS07	None Supplied	0.25	Brown sand with gravel and stones
357894	WS08	None Supplied	0.2	Brown clay and sand with gravel and stones

Analytical Report Number : 24-049681 Project / Site name: Blackwood

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	w	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
TPH Chromatogram in soil	TPH Chromatogram in soil	In-house method	L064B	D	NONE
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088- PL	D/W	MCERTS
Chromium III in soil	In-house method by calculation from total Cr and Cr VI	In-house method by calculation	L080- PL/L130B	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080-PL	w	MCERTS
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099-PL	D	MCERTS

Analytical Report Number : 24-049681 Project / Site name: Blackwood

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate	In-house method	L009B	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'F' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

*g - Unaccredited sample matrix.

Remada Ltd Forward House 17 High Street Henley-in-Arden Warwickshire B955AA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: info@remada.co.uk peter.searing@remada.co.uk

Analytical Report Number : 24-049684

Project / Site name:	Blackwood	Samples received on:	23/10/2024
Your job number:	1271.03	Samples instructed on/ Analysis started on:	24/10/2024
Your order number:	1271.03	Analysis completed by:	04/11/2024
Report Issue Number:	1	Report issued on:	04/11/2024
Samples Analysed:	3 10:1 WAC samples		

Signed:

Anna Goc PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-049684 Project / Site name: Blackwood Your Order No: 1271.03

Lab Sample Number	357895	357896	357897			
Sample Reference	WS03A	WS04	WS07			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	0.60	0.25			
Date Sampled	22/10/2024	22/10/2024	22/10/2024			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditatio Status			
			3			
Stone Content	%	0.1	NONE	44 7	20 5	30.8
Stone Content	%	0.01	NONE	67	29.5	37
Total mass of sample received	ka	0.01	NONE	1.5	5.7	1.2
	5			1.5	1	1.5
General Inorganics						
nH (1005B)	pH Units	N/A	MCERTS	72	8	8
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.2	0.8	12
Loss on Tanition @ 450°C	%	0.2	MCERTS	4.3	2.1	2
	+/-			1.5		-
Acid Neutralisation Capacity	mmol/kg	-9999	NONE	1.2	7.3	4.1
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.15
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.06
Phenanthrene	mg/kg	0.05	MCERTS	0.14	< 0.05	0.35
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.59
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.67
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.32
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.31
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	0.36
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	0.17
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.29
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.14
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.17
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05
Total PAH						
Total WAC-17 PAHs	mg/kg	0.85	NONE	< 0.85	< 0.85	3.59
Petroleum Hydrocarbons						
Mineral Oil (EC10 - EC40) FH (11 1D AI	mg/kg	10	NONE	19	< 10	170
				19	10	170
VOCs						
Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
p & m-Xylene	µg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
o-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
		10	1105070			
Total BTEX	µg/kg	10	MCERTS	< 10	< 10	< 10

Analytical Report Number: 24-049684 Project / Site name: Blackwood Your Order No: 1271.03

Lab Sample Number		357895	357896	357897			
Sample Reference				WS03A	WS04	WS07	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.50	0.60	0.25	
Date Sampled				22/10/2024	22/10/2024	22/10/2024	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status				
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001	< 0.001	0.003	
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001	< 0.001	0.006	
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001	< 0.001	0.012	
PCB Congener 180	mg/kg	0.001	MCERTS	< 0.001	< 0.001	0.016	
		0.007	MOEDTO		1	1	
Total PCBs	mg/kg	0.007	MCERIS	< 0.007	< 0.007	0.037	

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results 24-049684 Report No: REMADALT Client: Blackwood Location Landfill Waste Acceptance Criteria Lab Reference (Sample Number) 357895 Limits Sampling Date 22/10/2024 Stable Non reactive WS03A Sample ID Inert Waste HAZARDOUS Hazardous Landfill waste in non-Waste Landfill 0.50 Depth (m) hazardous Landfill Solid Waste Analysis TOC (%)** 1.2 3% 5% 6% oss on Ignition (%) ** 4.3 10% 6000 BTEX (µg/kg) ** < 10 ---Sum of PCBs (mg/kg) ** < 0.007 1 ------Mineral Oil (mg/kg) _{EH_1D_CU_} 19 500 -----Total PAH (WAC-17) (mg/kg) < 0.85 100 pH (units)** 7.2 >6 Acid Neutralisation Capacity (mmol / kg) 1.2 To be evaluated To be evaluated Eluate Analysis Limit values for compliance leaching test 10:1 10:1 using BS EN 12457-2 at L/S 10 l/kg (mg/kg) (BS EN 12457 - 2 preparation utilising end over end leaching mg/l mg/kg procedure) Arsenic * 0.00366 0.0366 0.5 25 2 Barium * 0.0284 0.284 20 100 300 < 0.000100 0.04 5 < 0.00100 Cadmium [:] 1 0.0011 10 70 Chromium 0.011 0.5 Copper * 0.0042 0.042 2 50 100 Mercury * < 0.000500 < 0.00500 0.01 0.2 2 Molybdenum * 0.00364 0.0364 0.5 10 30 0.0016 0.4 10 40 Nickel * 0.016 0.0015 0.015 0.5 10 50 Lead * 0.7 < 0.0017 < 0.017 0.06 5 Antimony * Selenium * < 0.0040 < 0.040 0.1 0.5 7 Zinc * 0.011 0.11 4 50 200 1.5 800 15000 25000 Chloride * 15 0.14 10 150 500 Fluoride* 1.4 30 50000 Sulphate 300 1000 20000 100000 73 730 4000 60000 TDS* Phenol Index (Monohydric Phenols) * < 0.010 < 0.10 1 DOC 3.36 33.6 500 800 1000 Leach Test Information Stone Content (%) 44.7 Sample Mass (kg) 1.5 Drv Matter (%) 93 Moisture (%) 6.7 Results are expressed on a dry weight basis, after correction for moisture content where applicable *= UKAS accredited (liquid eluate analysis only) Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation ** = MCERTS accredited

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results 24-049684 Report No: REMADALT Client: Blackwood Location Landfill Waste Acceptance Criteria Lab Reference (Sample Number) 357896 Limits Sampling Date 22/10/2024 Stable Non reactive WS04 Sample ID Inert Waste HAZARDOUS Hazardous Landfill waste in non-Waste Landfill Depth (m) 0.60 hazardous Landfill Solid Waste Analysis TOC (%)** 0.8 3% 5% 6% oss on Ignition (%) ** 2.1 10% 6000 BTEX (µg/kg) ** < 10 ---Sum of PCBs (mg/kg) ** < 0.007 1 ------Mineral Oil (mg/kg) _{EH_1D_CU_} < 10 500 -----Total PAH (WAC-17) (mg/kg) < 0.85 100 pH (units)** 8.0 >6 Acid Neutralisation Capacity (mmol / kg) 7.3 To be evaluated To be evaluated Eluate Analysis Limit values for compliance leaching test 10:1 10:1 using BS EN 12457-2 at L/S 10 l/kg (mg/kg) (BS EN 12457 - 2 preparation utilising end over end leaching mg/l mg/kg procedure) Arsenic * 0.00233 0.0233 0.5 25 2 Barium * 0.0130 0.130 20 100 300 < 0.000100 0.04 5 < 0.00100 Cadmium [:] 1 0.0017 10 70 Chromium 0.017 0.5 Copper * 0.013 0.13 2 50 100 Mercury * < 0.000500 < 0.00500 0.01 0.2 2 Molybdenum * 0.00161 0.0161 0.5 10 30 0.0011 0.4 10 40 Nickel * 0.011 0.0011 0.011 0.5 10 50 Lead * 0.7 < 0.0017 < 0.017 0.06 5 Antimony * Selenium * < 0.0040 < 0.040 0.1 0.5 7 Zinc * 0.0063 0.063 4 50 200 800 15000 25000 Chloride * 2.3 23 0.27 10 150 500 Fluoride* 2.7 17 170 50000 Sulphate 1000 20000 100000 68 4000 60000 TDS* 680 Phenol Index (Monohydric Phenols) * < 0.010 < 0.10 1 DOC 7.83 78.3 500 800 1000 Leach Test Information Stone Content (%) 29.5 Sample Mass (kg) 1.0 Drv Matter (%) 90 Moisture (%) 9.7 Results are expressed on a dry weight basis, after correction for moisture content where applicable *= UKAS accredited (liquid eluate analysis only) Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation ** = MCERTS accredited

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results 24-049684 Report No: REMADALT Client: Blackwood Location Landfill Waste Acceptance Criteria Lab Reference (Sample Number) 357897 Limits Sampling Date 22/10/2024 Stable Non reactive WS07 Sample ID Inert Waste HAZARDOUS Hazardous Landfill waste in non-Waste Landfill Depth (m) 0.25 hazardous Landfill Solid Waste Analysis TOC (%)** 1.2 3% 5% 6% oss on Ignition (%) ** 2.0 10% 6000 BTEX (µg/kg) ** < 10 ---Sum of PCBs (mg/kg) ** 0.037 1 ------Mineral Oil (mg/kg) _{EH_1D_CU_} 170 500 -----Total PAH (WAC-17) (mg/kg) 3.59 100 pH (units)** 8.0 >6 Acid Neutralisation Capacity (mmol / kg) 4.1 To be evaluated To be evaluated Eluate Analysis Limit values for compliance leaching test 10:1 10:1 using BS EN 12457-2 at L/S 10 l/kg (mg/kg) (BS EN 12457 - 2 preparation utilising end over end leaching mg/l mg/kg procedure) Arsenic * < 0.00100 < 0.0100 0.5 25 2 Barium * 0.327 3.27 20 100 300 < 0.000100 < 0.00100 0.04 5 Cadmium [:] 1 0.0016 10 70 Chromium 0.016 0.5 Copper * 0.0046 0.046 2 50 100 Mercury * < 0.000500 < 0.00500 0.01 0.2 2 Molybdenum * 0.00104 0.0104 0.5 10 30 < 0.00030 < 0.0030 0.4 10 40 Nickel * 0.0042 0.042 0.5 10 50 Lead * 0.7 < 0.0017 < 0.017 0.06 5 Antimony * Selenium * < 0.0040 < 0.040 0.1 0.5 7 Zinc * 0.010 0.10 4 50 200 2.1 800 15000 25000 Chloride * 21 0.22 10 150 500 Fluoride* 2.2 4.3 50000 Sulphate 43 1000 20000 100000 36 360 4000 60000 TDS* Phenol Index (Monohydric Phenols) * < 0.010 < 0.10 1 DOC 3.50 35.0 500 800 1000 Leach Test Information Stone Content (%) 39.8 Sample Mass (kg) 1.3 Drv Matter (%) 96 Moisture (%) 3.7 Results are expressed on a dry weight basis, after correction for moisture content where applicable *= UKAS accredited (liquid eluate analysis only) Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation ** = MCERTS accredited

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 24-049684

Project / Site name: Blackwood

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
357895	WS03A	None Supplied	0.5	Brown clay and sand with gravel and stones
357896	WS04	None Supplied	0.6	Brown clay and sand with gravel and stones
357897	WS07	None Supplied	0.25	Brown sand with gravel and stones

Analytical Report Number : 24-049684 Project / Site name: Blackwood

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30° C)	In-house method	L019B	w	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047-PL	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088- PL	D/W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025

Analytical Report Number : 24-049684 Project / Site name: Blackwood

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

Correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: peter.searing@remada.co.uk

Remada Ltd

Forward House

17 High Street

Warwickshire

B955AA

Henley-in-Arden

Analytical Report Number : 24-051143

Project / Site name:	Blackwood	Samples received on:	31/10/2024
Your job number:	1271.03	Samples instructed on/ Analysis started on:	31/10/2024
Your order number:	1271.03	Analysis completed by:	06/11/2024
Report Issue Number:	1	Report issued on:	06/11/2024
Samples Analysed:	2 non soil samples		

Signed:

Anna Goc PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Analytical Report Number: 24-051143 Project / Site name: Blackwood Your Order No: 1271.03

I ab Sample Number				365569	365570
Sample Reference				WS05	WS06
Sample Number				None Supplied	None Supplied
Depth (m)				0.05	0.05
Date Sampled				30/10/2024	30/10/2024
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Test Limit of detection	Test Accreditation Status		

Stone Content	%	0.1	NONE	< 0.1	24.6
Moisture Content	%	0.01	NONE	< 0.01	5.3
Total mass of sample received	kg	0.1	NONE	0.3	0.3

Speciated PAHs

Naphthalene	mg/kg	0.05	NONE	< 0.05	0.15
Acenaphthylene	mg/kg	0.05	NONE	< 0.05	0.19
Acenaphthene	mg/kg	0.05	NONE	0.29	< 0.05
Fluorene	mg/kg	0.05	NONE	0.14	< 0.05
Phenanthrene	mg/kg	0.05	NONE	0.4	0.37
Anthracene	mg/kg	0.05	NONE	0.17	0.25
Fluoranthene	mg/kg	0.05	NONE	2.2	0.67
Pyrene	mg/kg	0.05	NONE	2.9	1.3
Benzo(a)anthracene	mg/kg	0.05	NONE	0.69	0.7
Chrysene	mg/kg	0.05	NONE	0.8	1.9
Benzo(b)fluoranthene	mg/kg	0.05	NONE	1.1	6.9
Benzo(k)fluoranthene	mg/kg	0.05	NONE	0.34	1.9
Benzo(a)pyrene	mg/kg	0.05	NONE	0.78	5.7
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	NONE	< 0.05	4.1
Dibenz(a,h)anthracene	mg/kg	0.05	NONE	< 0.05	0.87
Benzo(ghi)perylene	mg/kg	0.05	NONE	< 0.05	4.7
Coronene	mg/kg	0.05	NONE	< 0.05	0.32

Total PAH

Total WAC-17 PAHs	mg/kg	0.85	NONE	9.81	30
			-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

lss No 24-051143-1-Blackwood 127103_FR Page 2 of 4

Analytical Report Number : 24-051143 Project / Site name: Blackwood

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
365569	WS05	None Supplied	0.05	Non Soil. ^{*g}
365570	WS06	None Supplied	0.05	Non Soil. ^{*g}

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Iss No 24-051143-1-Blackwood 127103_FR Page 3 of 4

Analytical Report Number : 24-051143 Project / Site name: Blackwood

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

*g - Unaccredited sample matrix.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Iss No 24-051143-1-Blackwood 127103_FR Page 4 of 4

APPENDIX D Laboratory Geotechnical Tests

Contract Number: 75525

Client Ref: **1271.03** Client PO: **1271.03**

Client: Remada Limited

Laboratory Report

Contract Title: **Blackwood** For the attention of: **Info** Date Received: 24-10-2024 Date Completed: 08-11-2024 Report Date: 08-11-2024

This report has been checked and approved by:

Brendan Evans Office Administrator

Description	Qty
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	5
1 Point Liquid & Plastic Limit	5
BS 1377:1990 - Part 2 : 4.4 & 5.3 - * UKAS	
Particle Size Distribution	3
BS EN ISO 17892-4 : 5.1 - * UKAS	
BRE Reduced Suite	5
includes pH, water & acid soluble sulphate and total sulphur	
Sud-contracted lest	
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.

Approved Signatories:

Brendan Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Wayne Honey (HR & HSE Manager)

GSTI	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX				
GEOTECHNICAL SITE & TESTING LABORATORIES	(BS 1377:1990 - Part 2 : 4.4 & 5.3)				
Contract Number	75525				
Project Name	Blackwood				
Date Tested	04/11/2024				

DESCRIPTIONS

Sample/Hole Reference	Sample Number	Sample Type	Depth (m)		m)	Descriptions
WS03A		D	1.30	-		Brown silty CLAY
WS03A		D	1.80	-		Brown clayey SILT
WS04		D	1.10	-		Brown silty CLAY
WS07		D	0.95	-		Brown clayey SILT
WS08A		D	2.50	-		Brown fine to coarse gravelly silty CLAY
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Operator

Jordan Williams

GSTI	NAT
GEOTECHNICAL SITE & TESTING LABORATORIES	

ATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.4 & 5.3)

EUTECHNICAL SITE & TESTING LABORATORIES		
Contract Number	75525	
Project Name	Blackwood	
Date Tested	04/11/2024	

Sample/Hole Reference	Sample Number	Sample Type	De	epth (r	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing 0.425mm %	Remarks
WS03A		D	1.30	-		28	40	14	26	100	CI Intermediate Plasticity
WS03A		D	1.80	-		26	48	32	16	100	MI Intermediate Plasticity
WS04		D	1.10	-		26	39	12	27	100	CI Intermediate Plasticity
WS07		D	0.95	-		26	47	34	13	100	MI Intermediate Plasticity
WS08A		D	2.50	-		15	51	12	39	75	CH High Plasticity
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
				-							
Symbols: NP : Non P	ymbols: NP : Non Plastic # : Liquid Limit and Plastic Limit Wet Sieved										

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:2015+A1:2020

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	76		
28	68		
20	55		
14	49		
10	45		
6.3	37		
5	36		
3.35	34		
2	30		
1.18	26		
0.63	21		
0.425	18		
0.30	16		
0.20	13		
0.15	12		
0.063	9		

Sample Proportions	% dry mass
Cobbles	0
Gravel	70
Sand	21
Silt and Clay	9

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Operator	
Emyr	

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	87		
20	73		
14	65		
10	60		
6.3	53		
5	51		
3.35	49		
2	48		
1.18	42		
0.63	36		
0.425	33		
0.30	29		
0.20	22		
0.15	19		
0.063	16		

Sample Proportions	% dry mass
Cobbles	0
Gravel	52
Sand	32
Silt and Clay	16

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Emyr

Operator

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	89		
14	88		
10	85		
6.3	84		
5	84		
3.35	83		
2	81		
1.18	78		
0.63	73		
0.425	70		
0.30	67		
0.20	63		
0.15	62		
0.063	58		

Sample Proportions	% dry mass
Cobbles	0
Gravel	19
Sand	23
Silt and Clay	58

Remarks

Preparation and testing in accordance with BS17892 unless noted below

Emyr

Operator

GSTL Unit 3-4 Heol Aur Dafen Ind Estate Dafen SA14 8QN

7 - 11 Harding Street Leicester LE1 4DH

Analytical Test Report: E24/00368/GSL - 24-51954

Your Project Reference:	BLACKWOOD 1271.03		
Your Order Number:	75525	Samples Received / Instructed:	31/10/2024 / 31/10/2024
Report Issue Number:	1	Sample Tested:	31/10 to 07/11/2024
Samples Analysed:	5 sample(s)	Report issued:	07/11/2024

Signed

Emily Blissett Report Manager CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited, subUKAS - Subcontracted to a laboratory UKAS accredited for this test, subMCERTS - Subcontracted to a laboratory MCERTS accredited for this test

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

UKAS accreditation on waters only covers the Ground water and Surface water matrices

Date of Issue: 23.10.2024 Issued by: J. Gane Issue No: 4 Rev No: 17

E24/00368/GSL - 24-51954

Project Reference - BLACKWOOD 1271.03

Analytical Test Results - Chemical Analysis

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference			414178	414179	414180	414181	414182	
Client Sample ID			-	-	-	-	-	
Client Sample Location			WS03A	WS08A	WS01	WS02	WS03A	
Client Sample Type			D	D	D	D	D	
Client Sample Number			-	-	-	-	-	
Depth - Top (m)			1.30	2.50	1.30	1.50	2.50	
Depth - Bottom (m)			1.30	2.50	1.30	1.50	2.50	
Date of Sampling			-	-	-	-	-	
Time of Sampling			-	-	-	-	-	
Sample Matrix			Clay	Clay	Clay	Clay	Clay	
Determinant	Units	Accreditation						
Water soluble sulphate (as SO ₄)	(mg/l)	u	420	69	33	21	11	
Acid Soluble Sulphate	(%)	u	0.30	0.06	0.04	0.03	< 0.01	
Total Sulphur	(%)	UKAS	0.24	0.05	0.02	0.02	< 0.01	
pH Value	pH Units	MCERTS	4.0	6.9	6.5	6.9	6.7	

E24/00368/GSL - 24-51954

Project Reference - BLACKWOOD 1271.03

Sample Descriptions

7 - 11 Harding Street Leicester LE1 4DH

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
414178	-	WS03A	D	-	Greyish brown gravelly sandy silty clay	-	-	100
414179	-	WS08A	D	-	Greyish brown gravelly sandy silty clay with rare organic matter	-	-	100
414180	-	WS01	D	-	Greyish brown gravelly sandy silty clay	-	-	100
414181	-	WS02	D	-	Greyish brown gravelly sandy silty clay	-	-	100
414182	-	WS03A	D	-	Greyish brown gravelly sandy silty clay	-	-	100

7 - 11 Harding Street Leicester LE1 4DH

E24/00368/GSL - 24-51954

Project Reference - BLACKWOOD 1271.03

Sample Comments

ab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
414178	-	WS03A	D	-	
414179	-	WS08A	D	-	
414180	-	WS01	D	-	
414181	-	WS02	D	-	
414182	-	WS03A	D	-	

E24/00368/GSL - 24-51954

Project Reference - BLACKWOOD 1271.03

Analysis Methodologies

7 - 11 Harding Street Leicester LE1 4DH

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation	-		Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

7 - 11 Harding Street Leicester LE1 4DH

E24/00368/GSL - 24-51954

Project Reference - BLACKWOOD 1271.03

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

A - No date of sampling provided

C - Received in inappropriate container

H - Contains headspace

T - Temperature on receipt exceeds storage temperature

R - Sample(s) received with less than 96 hours for testing to commence/complete, any result formally classed as deviating will be marked with an X against the applicable test (i.e. RX)

Observations whilst in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Test	Deviations
414178	-	WS03A	D	-		A
414179	-	WS08A	D	-		A
414180	-	WS01	D	-		А
414181	-	WS02	D	-		А
414182	-	WS03A	D	-		А

