Google Streetview October 2024

Streetview Image at the road bridge on the B4591 (NGR 324437, 189789) facing upstream (adjacent to site boundary). Image extracted on 24/10/2024.

Streetview Image at the road bridge on the B4591 (NGR 324437, 189789) facing downstream (adjacent to site boundary). Image extracted on 24/10/2024.

Streetview Image at the bridge on Dan y Graig Road (NGR 323621,190544) facing upstream. Image extracted on 24/10/2024

8 ANNEX - SUPPORTING INFORMATION

8.2 Hydrology Methodology and NRW Correspondence

15679 – Land at Pontymister, Risca Proposed hydraulic modelling methodology for NRW comment – Existing NRW Model Build

March 2024

Background

We are currently undertaking hydraulic modelling of the River Ebbw through Risca to inform a Flood Consequences Assessment for a proposed commercial development site at Commercial Street, Risca, Newport, NP11 6EE (NGR: 324398, 189871). A location plan and aerial image is included in Appendix A.

Prior to progressing works further, we are seeking your advice and comment with regard to our proposed modelling methodology. We find that discussing our approach with Natural Resources Wales (NRW) at the early stage saves all parties involved time and ensures your team's site-specific requirements are fully accounted for. As such, please find below our proposed methodology for your consideration. Your advice or comment would be very much appreciated.

Model Details & Requirements

Waterco have been provided with the NRW River Ebbw Integrated Catchment model (2019) in a recent data request (January 2024 – ATI 26398a). A detailed review of the existing model has been carried out by Waterco to assess its suitability for use to inform the flood risk to the proposed development. The results of the model review are as follows:

The site is located within the Risca domain. At this stage, we are not proposing to truncate the model, however if run times or model stability becomes an issue, then this would be reviewed.

- There are a sensible number of cross sections in the vicinity of the site, spaced ~20m to ~50m apart.
- The downstream boundary of the model is tidally influenced. There is no tidal influence at the site and therefore tidal calculations will not be updated. This will also not be applicable if the model is truncated at a later date.
- The model will be run in the latest versions of the software.
- Most recent climate change allowances would need to be considered on the appropriate events. Please see below for more details.
- The model DTM will be reviewed against latest available data. If there are differences in levels within the model extent then the latest data will be used within the model.

Based on the findings of the model review, it is believed the model is fit for purpose (post review updates) to provide an upto-date, site-specific assessment of flood risk at the existing (EXG) site. Therefore, we propose to utilise the current NRW hydraulic model of the River Ebbw to provide the required output data. Given the existing model was a detailed and thorough assessment of the flood risk to the catchment, and that the nature of the development is 'less vulnerable' development, it is deemed a proportionate approach. The existing model will also be used to quantify the impact of the development on flood risk elsewhere (if any) through simulation and comparison of the proposed development (DEV) site arrangement. Model outputs will then be used to support the Flood Consequences Assessment being prepared for the development.

Please advise if you are your team are aware of any pre-existing issues with the model – any additional information at this stage is useful. Thank you.

The site is shown to be located within NRW Defended Flood Zone 3 on the 'NRW Flood Map for Planning – Rivers'.

Model and Simulation Type

Software:	FMP-TUFLOW
Approach:	Fluvial and Tidal.
Extent:	Please find the model extent included in Appendix B.

Hydrological Calculations

A robust and detailed hydrology assessment was carried out by NRW (July 2019) to produce the model inflows. The flows were also calibrated to local data to improve confidence in the model inflows. Due to the detail of the previous hydrology assessment carried out in the existing model, we propose to utilise the existing watercourse inflows and boundary conditions contained in the model and simply re-run with site-specific updates. We trust this is acceptable.

Events / Scenarios Considered

Model study to simulate and compare the flood risk at the site for the existing (EXG) and proposed development (DEV) level. Table 1 provides a summary of the proposed events and scenarios.

Proposed Climate Change Allowance (CCA) for this site during the 3.33%, 1% AEP and 0.1% AEP events are + 25% (Central – CC1) and 70% (Upper – CC2) in accordance with NRW guidance (Site located in River Severn River Basin; development considered 'less vulnerable' with predicted 100 year lifetime).

Site located in the Severn River Basin Management Catchment District.

Development considered 'less vulnerable'.

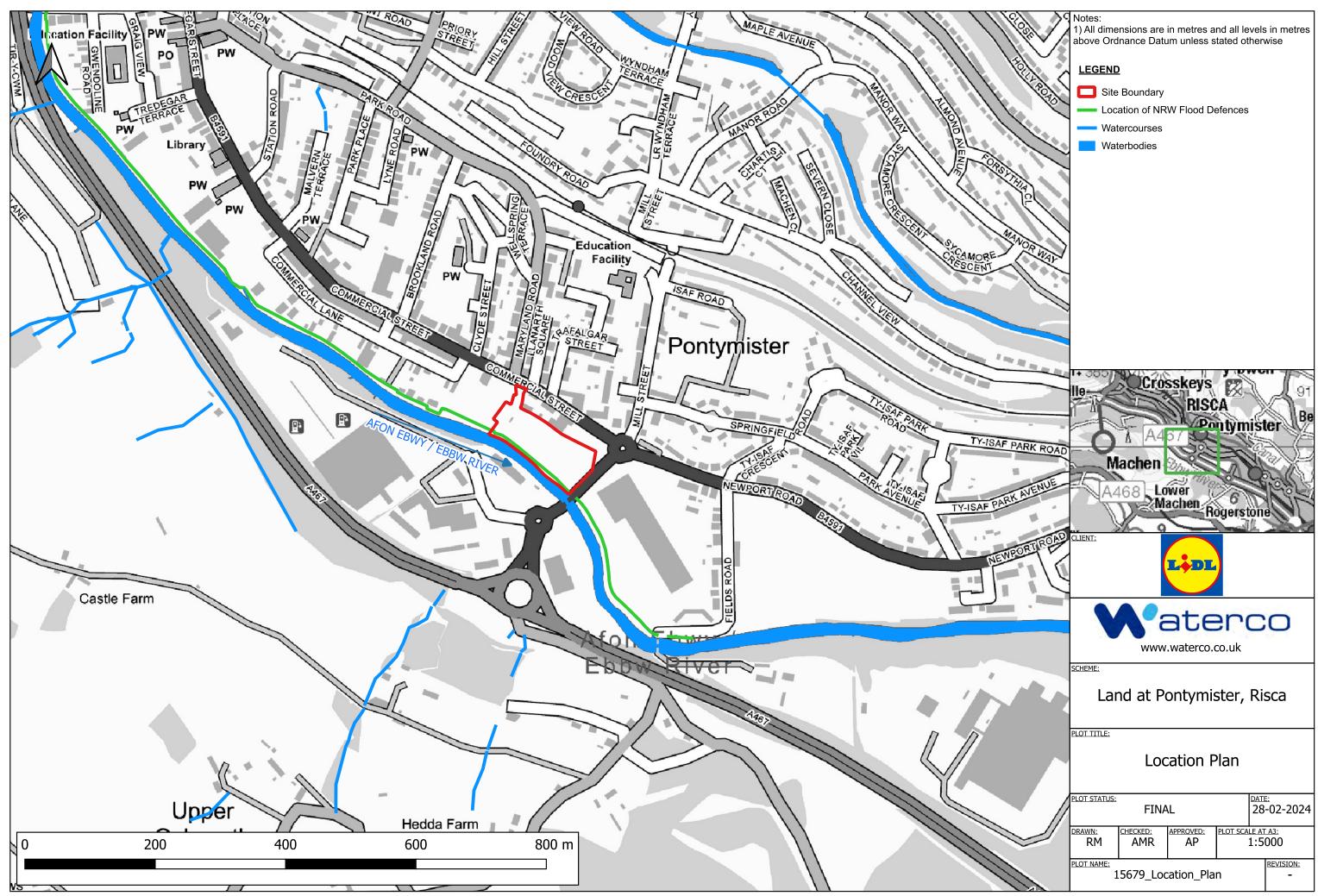
Blockage Scenario

Blockage scenarios based on the latest NRW blockage guidance document will be carried out simulating a 25% blockage of the B4591 Road Bridge (at approximately NGR: 324440, 189784) during the 1% AEP plus CC1, 1% AEP plus CC2 and 0.1% AEP events only. A 25% blockage has been deemed applicable due to the size of the bridge.

Sensitivity Tests

Sensitivity Tests (ST) will not be considered as we are proposing to utilise the existing NRW model, which has undergone sensitivity testing and calibration previously. However, if the model is truncated at a later stage, a sensitivity test will be carried out on the downstream boundary.

Table 1 Summary Table of Proposed Model Scenarios and Events


Event (AEP)	Scenario						
	Existing site layout and level (EXG)	Proposed site layout and levels (DEV)	Blockage (BL)				
5%	✓	✓					
3.3%	✓	✓					
3.3% + CC1	✓	\checkmark					
3.3% + CC2	✓	✓					
1%	✓	✓					
1% + CC1	✓	✓	\checkmark				
1% + CC2	✓	✓	\checkmark				
0.1%	✓	✓	\checkmark				
0.1% + CC1	✓	✓					
0.1% + CC2	\checkmark	✓					

For Your Consideration

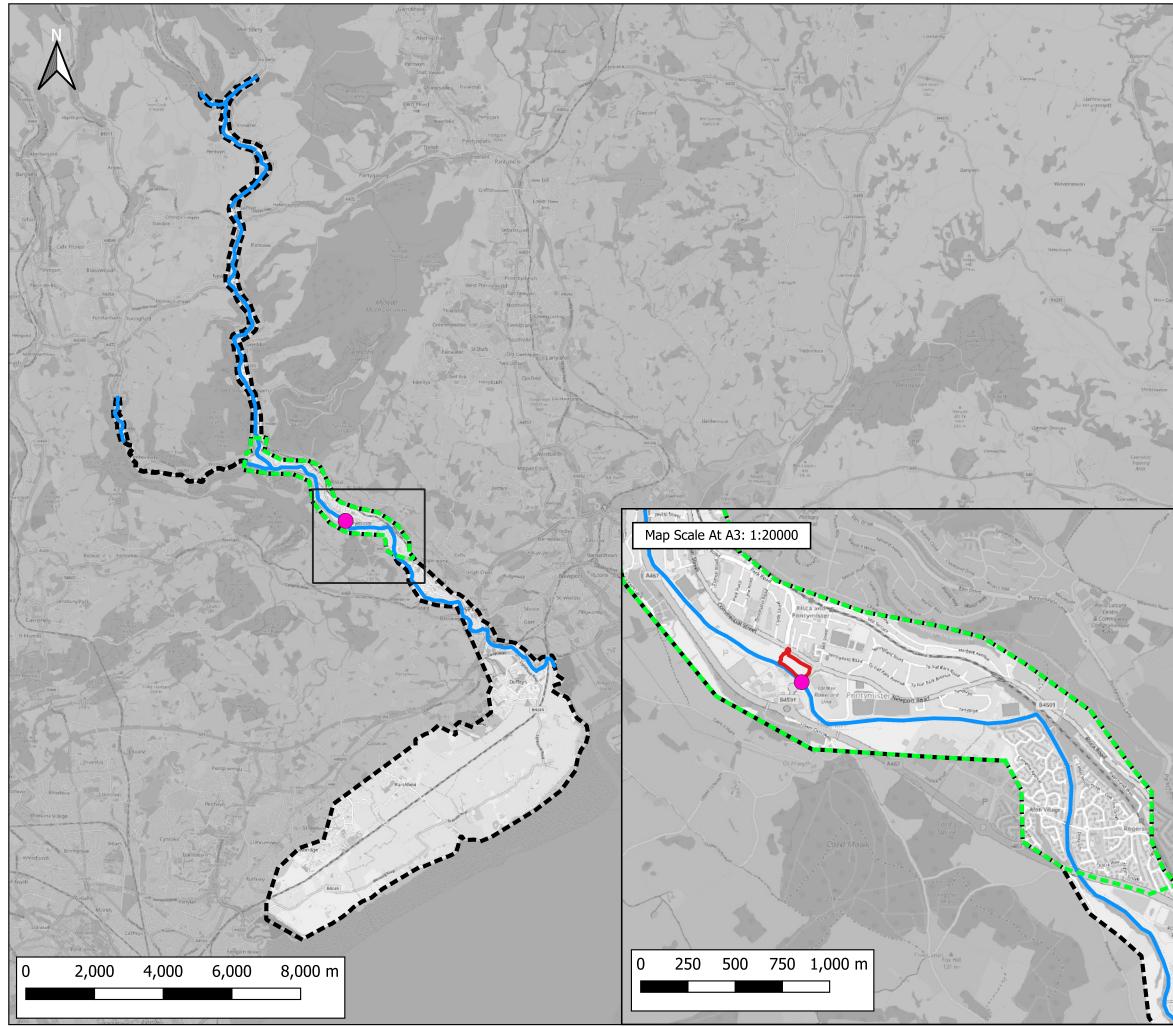
Please provide comment on our above methodology and whether you are in agreement with the approach outlined? Please also confirm if any hydrology updates are required?

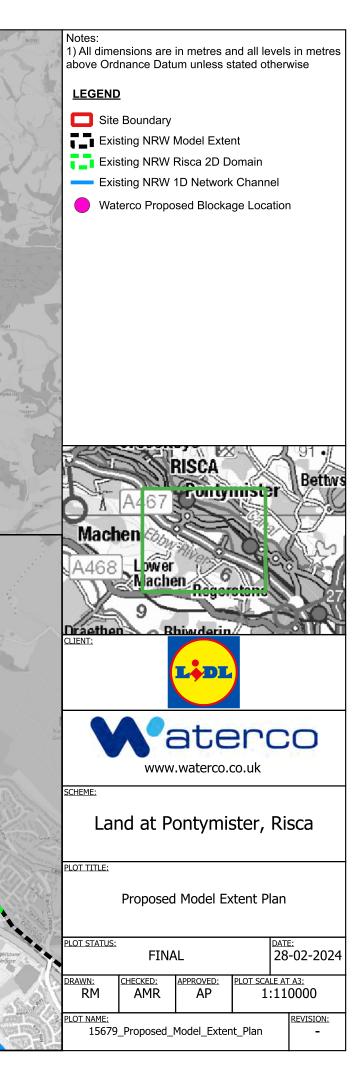
Appendix A Location Plan and Aerial Image

CONTAINS OS DATA © CROWN COPYRIGHT (2024)

CONTAINS OS DATA © CROWN COPYRIGHT (2024) IMAGERY ©2024 GOOGLE, IMAGERY ©2024 AIRBUS, BLUESKY, INFOTERRA LTD & COWI A/S, GETMAPPING PLC, MAXAR TECHNOLOGIES, THE GEOINFORMATION GROUP, MAP DATA ©2024

Notes: 1) All dimensions are in metres and all levels in metres above Ordnance Datum unless stated otherwise


LEGEND



Appendix B Proposed Model Extent

CONTAINS OS DATA © CROWN COPYRIGHT (2024)

From: Sent: To: Subject:	Derrick, Richard <richard.derrick@cyfoethnaturiolcymru.gov.uk> 08 August 2024 12:21 Martha Hughes RE: 15679 - Land at Pontymister, Risca - Proposed Hydraulic Modelling Methodology</richard.derrick@cyfoethnaturiolcymru.gov.uk>
Categories:	Info

Caution: This is an external email and may be malicious. Please take care when clicking links or opening attachments.

Good afternoon Martha

Thank you for your email outlining your methodology for a proposed hydraulic modelling study for Risca, please accept my sincere apologies for the delay in replying to you.

With regards to using the existing hydrology, our Hydrology team make the following comment:
1) there have been a number of dataset and software changes since 2019 and so revised hydrology would be recommended.

With regards to your methodology it is acceptable, however, I make the following comments:

- 1) We are not aware of any pre-existing issues with the model
- 2) There is new LiDAR available flown between 2020 and 2022 which is available from DataMapWales
- 3) If the model is to be truncated then we would recommend carrying out sensitivity analysis on the downstream boundary.

I hope this is of assistance to you but do please get in touch if I can be of further assistance.

Kind Regards

Richard Derrick

Arweinydd Tim Dadansoddi Perygl Llifogydd/ Team Leader Flood Risk Analysis Rheoli Llifogydd a Dwr / Flood and Water Management

Croesewir gohebiaeth yn Gymraeg a byddwn yn ymateb yn Gymraeg, heb i hynny arwain at oedi.

Correspondence in Welsh is welcomed, and we will respond in Welsh without it leading to a delay.

From: Sent: To: Subject: Martha Hughes 09 August 2024 15:47 'Derrick, Richard' RE: 15679 - Land at Pontymister, Risca - Proposed Hydraulic Modelling Methodology

У 🖸 in

Hi Richard,

Thank you for your reply. In terms of the hydrology, please could you confirm whether these are recommended (advisable), or are the updates necessary to ensure the model is suitable to support a planning application i.e. would NRW likely object to a planning application if the hydrology in the model was not updated.

Kind Regards,

Martha Hughes MSc

Hydraulic Modeller

martha.hughes@waterco.co.uk

We're recruiting! For more information, please take a look at our website.

Please consider the environment before printing this email.

From:	Derrick, Richard <richard.derrick@cyfoethnaturiolcymru.gov.uk></richard.derrick@cyfoethnaturiolcymru.gov.uk>
Sent:	23 August 2024 13:36
То:	Martha Hughes
Subject:	RE: 15679 - Land at Pontymister, Risca - Proposed Hydraulic Modelling
	Methodology

Caution: This is an external email and may be malicious. Please take care when clicking links or opening attachments.

Good afternoon Martha

Sorry for the delay in replying, I have spoken to our Hydrology team and they have confirmed that the updated hydrology is required and they will reject any modelling based on the existing hydrology.

Hope this clarifies the position, please come back to me if there's anything else I can do to help.

Kind Regards Rich

Richard Derrick

Arweinydd Tim Dadansoddi Perygl Llifogydd/ Team Leader Flood Risk Analysis Rheoli Llifogydd a Dwr / Flood and Water Management

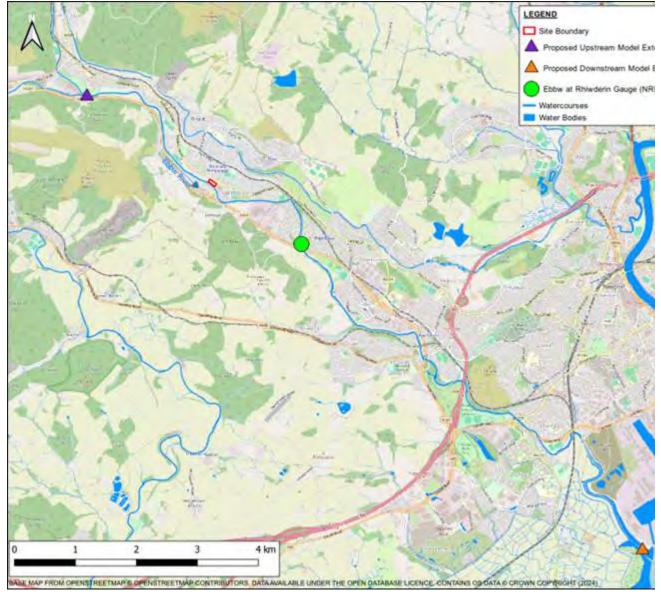
Croesewir gohebiaeth yn Gymraeg a byddwn yn ymateb yn Gymraeg, heb i hynny arwain at oedi.

Correspondence in Welsh is welcomed, and we will respond in Welsh without it leading to a delay.

Cyfoeth Naturiol Cymru Natural Resources Wales Byd natur a phobl yn ffynnu gyda'n gilydd

Nature and people thriving together

cyfoethnaturiol.cymru naturalresources.wales


From:	Martha Hughes
Sent:	29 August 2024 16:37
То:	'Derrick, Richard'
Cc:	Bethan Lloyd Jones
Subject:	RE: 15679 - Land at Pontymister, Risca - Proposed Hydraulic Modelling
-	Methodology

Good afternoon Richard,

Further to your email below, we have reviewed the Ebbw River Hydrology Assessment Report provided (Ebbw Baseline Hydrology and Addendum to the Ebbw Baseline Hydrology, 2017) and the hydraulic model (EbbwLowerICM_5_V1.0_2018). Please see below an outline plan for the completion of the updated hydrology for your comment.

Proposed Methodology

 Model extent - the upstream extent of the hydraulic model will be truncated to the confluence between the Ebbw River and the Sirhowy River. The downstream extent of the model is to be maintained as per the NRW model. See extent outlined below.

- Due to the locations of the upstream and downstream boundaries of the hydraulic model and the large catchment area (>200km²), a single inflow will be required for the hydraulic model.
- A single inflow is also recommended by our hydrology team due to the presence of a reliable gauging station 2.2km downstream of the subject site (Ebbw at Rhiwderin, NRFA ID 56002). There is a small catchment area difference between the catchment adjacent to the subject site and the catchment at the gauging station. The catchment area adjacent to the site is 207.34km² and at the gauging station is 211km², a difference in catchment area of 2%.
- A single catchment assessment will be carried out at the Ebbw at Rhiwderin gauging station using the enhanced single site analysis method. Gauged data has been requested from NRW for this station. The data will be used for two purposes, the first is to ensure that the number of AMAX years includes the most recent data and the second is to use the 15 minute gauge data for the AMAX floods to compare the real hydrograph shape with that of REFH2 and then possibly to use the real shape as the shape of the design hydrograph. Please advise if you have any concerns about us using this particular station.
- The results will be compared with historical flood records and the AMAX data on record.
- The two methods investigated will be ReFH2 and FEH Statistical Enhanced Single Site. ReFH2 will unlikely be the chosen method to produce the final peak flows due to the seemingly reliable gauge near to the site.
- Given the size of the model extent further downstream of our proposed calculation point, we propose to maintain the existing NRW hydrology within the hydraulic model downstream of our calculation point. Given the distance (~2.2km) from the site this will have negligible impact on water levels at the site. The reason for including the hydrology is to ensure the model still simulates.

🏏 🕒 in

• Gauged data for the three gauging stations located within the catchment (Ebbw at Rhiwderin, Sirhowy at Wattsville and Ebbw at Aberbeeg), any rain gauges and historical flood information has been requested.

If you do have any comments on the details above, please do not hesitate to let us know.

Kind Regards,

Martha Hughes MSc

Hydraulic Modeller

martha.hughes@waterco.co.uk

We're recruiting! For more information, please take a look at our website.

Please consider the environment before printing this email.

From:	Derrick, Richard <richard.derrick@cyfoethnaturiolcymru.gov.uk></richard.derrick@cyfoethnaturiolcymru.gov.uk>
Sent:	18 September 2024 09:54
То:	Martha Hughes
Subject:	RE: 15679 - Land at Pontymister, Risca - Proposed Hydraulic Modelling
	Methodology

Caution: This is an external email and may be malicious. Please take care when clicking links or opening attachments.

Good morning Martha

Apologies for the delay in replying I've been on leave and am catching up on emails, our Hydrology team have confirmed that your methodology is suitable.

Kind regards

Richard Derrick

Arweinydd Tim Dadansoddi Perygl Llifogydd/ Team Leader Flood Risk Analysis Rheoli Llifogydd a Dwr / Flood and Water Management

Croesewir gohebiaeth yn Gymraeg a byddwn yn ymateb yn Gymraeg, heb i hynny arwain at oedi.

Correspondence in Welsh is welcomed, and we will respond in Welsh without it leading to a delay.

Cyfoeth Naturiol Cymru Natural Resources Wales Byd natur a phobl yn ffynnu gyda'n gilydd

Nature and people thriving together

oryfoethnaturiol.cymru naturalresources.wales 8 ANNEX - SUPPORTING INFORMATION

8.3 Historical Review

4 Historic Flooding

The River Ebbw benefits from river flow and level gaugings at a number of locations. The 2005 study carried out by JBA² undertook a historic review of flooding. This identified several flood occurrences with specific reference to the Ebbw catchment (as opposed to more general flooding in South Wales) from as early as 1768. There are 10 major floods in the Ebbw since the middle of the nineteenth century, 3 of which are captured by the gauged period and floods in 1960 and 1979 are reported to have caused significant flooding to land and property. However, a lack of specific references to levels at defined locations in the historic period and uncertainties in the gauged record means that these flood events have not been ranked. Furthermore, it has not been possible to use the historic information to validate the assigned return periods of the recent maximum gauged floods.

The historical information is useful in illustrating the potential for floods of different kinds. Of the 10 major floods since 1875, 8 have been predominantly winter events and mainly due to prolonged rainfall. 2 were severe events which occurred in the summer months: July 1875; and May 1931. Due to the intensity of the rainfall, flooding was caused by surface water runoff from the steep hill sides, as well as the main rivers.

The following table summarises the more relevant data that have been extracted from local newspaper reporting, as reported in previous studies for the River Ebbw catchment.

Table 3 – Summary of reported historical flood events, extracted from the 2005 JBA study *note that these are largely anecdotal accounts of flooding.

Date Quotation

- 1607 Very serious flooding in South Wales that is said to have taken 2000 lives in 'lamentable news out of Monmouthshire' drowning infinite numbers of cattell (sic), sheep, oxen and horses, with the immersion of 26 parishes. The Severn having been driven landwards by a violent south-westerly wind, continuing for 3 days. The flood swept across the coast and for a distance of four miles inland along reach of coast centred on the Usk/Ebbw estuary....
- 1768 On Tuesday the flood was so violent at Baffeleg (sic) on the lower Ebbw that Tredegar Park was overflowed, and many deer carried down by the current, but most of them were taken up by boats. There had been heavy snow during the previous week.
- 1875 Widespread heavy rain in both the eastern and western valleys (including the Ebbw) scores of cottages were rendered uninhabitable and houses abandoned. On the Ebbw from Abercarn to Tredegar Park, low-lying land was under water and the roads impassable. At Pontymister, Risca and villages higher up desolation prevails'.

The greatest amount of damage in this valley is in the neighbourhood of Abercarn where the vale is narrow, and the waters are penned in...

At Cross Keys two separate torrents came down upon the line, and taxed all the energies of a gang of men to prevent the rails and sleepers being carried away...

Two houses were badly flooded at Tyrphil, New Tredegar on the River Sirhowy and one person was drowned...

² EAW River Ebbw Flood Risk Mapping Final Report v3.0, 2005

Date Quotation

- 1925 Heavy rain affected South Wales. On the Ebbw catchment damage was done ... At Cwm, the Duffryn Schools playground was flooded to a depth of several feet, whilst many houses in Cwm were isolated by the flood.
- 1929 Very serious and prolonged rainfall in November brought flooding on more than one occasion to South Wales valleys.

At Cwm on the Ebbw, water was up to the doors of huses in Oak Street whilst allotments and fo**otball fields were under water...Many houses in Cwm and Ebbw Vale were flooded,** with people stranded in upstairs rooms. Duffryn School yard was flooded along with the boiler house but not the school itself. The Glyn Milwr pond above Blaina overflowed along Henwain Street to the Abertillery Road; culvert capacity was insufficient and houses in Jubilee Terrace were flooded.

At Aberbeeg, the recreation grounds were covered. The concrete bridge at Llanhilleth Colliery was under water for several hours whilst at Abercarn the cricket pitch was inundated. At Pandy Park Farm at Cross Keys, water reached the ceiling of the kitchen and the occupants had to be rescued. At Risca the Palace Cinema was flooded with water down the adjacent road for 400 yards. Shops and a café were flooded. Houses were flooded in Shaftesbury Street and there was 2 feet of water in the gasworks. Occupants of 2 and 3 Tredegar Terrace were obliged to abandon house; the water was 13 inches in the house. Fields between Risca and Bassaleg were covered to a depth of several feet, and the Welfare football ground was flooded...

At Bassaleg, the road between the railway and the river bridges was under water.

1931 At Crumlin the flood 'broke down the mountainside' near the Navigation Hotel, flooding the Mill Cottage to the bedrooms. The square was flooded. At Newbridge, houses were flooded at Pant Side, Golden Grove and Meredith Terrace.

Houses were flooded at Pontymister, Risca and Cross Keys. At the Kings Head, Cross Keys, water was over the railway line. Water was four feet deep on the road under the rail bridge.

1933 Heavy rain fell on the 9th and 10th (October)

The River Ebbw overflowed in the Western valleys and caused much damage to property but principally from water coming off the hillside.

At Llanhilleth the park and bowling green were under water for the third time in 10 years since construction. Some houses in Meadow Street, Llanhilleth were flooded.

At Cross Keys water was one foot deep under the railway bridge.

1960 North Road Newbridge was flooded to a depth of 6 feet on the low-lying side of the road next to the railway line; about 20 houses were affected.

Meadow Street and Railway Street, Llanhilleth were flooded to a depth of three feet with an estimated 87 homes affected.

Homes were also flooded at New Woodland Terrace, Aberbeeg. The river rose above two of the bridges at River Row, flooding a warehouse.

At Basselleg the road was deeply flooded from Pye Corner railway bridge to the road bridge. Several houses were flooded.

Date	Quotation
1979	Western Mail reported that locally 6 inches of rain fell in 12 hours. 5 major roads were affected including: Aberbeeg to Ebbw Vale; Blackwood to Tredegar; Ebbw Vale Steelworks Road.
	At Aberbeeg, 14 houses were evacuated at Railway Terrace as water gushed through; two houses lost extensions.
	Risca: worst flooding in area. 693 houses were flooded. A 3-mile stretch of the river embankment 'devastated'. The service road at the back of Commercial Street was badly damaged and no longer accessible. Commercial Road was flooded to a depth of 5-6 feet.
	The flood overtopped the banks upstream from the footbridge at Grover Road and came out onto the main road at Exchange Inn. Grove Street was cut off but the houses not flooded.
	Risca floodbanks were built or renewed in the early 1980s in response to the flood with a substantial earth embankment upstream from the footbridge and there has been no flooding since 1979.
1998	Reviewing the available information for the October 1998 flood event identified that there were no reports of flooding within the reaches of the River Ebbw that are being modelled.
	There were however reports of flooding at Tredegar, which is upstream of Ynysddu on the River Sirhowy.

Historical data should be considered with caution, as the following issues can arise:

Reliability and completeness of observations; Channel geometry has changed at the site of observation or at the control; Catchment potential for flooding has changed over historic period; Climate has changed; Difficulty of comparison with gauged floods;

Notably, the accounts of flooding for the 1998 event differ from the Environment Agency Wales Overview of the October 1998 Floods in Wales. An extract from this document for the Ebbw, Sirhowy and Llwyd catchment confirms that: "*In historical terms the levels experienced on the Ebbw in October were the highest on record at Aberbeeg, Risca and Rhiwderin. Records have been maintained for these sites for between 10 and 23 years. The only report of flooding in this catchment was at Tredegar where 32 properties were reported to have flooded when a highway culvert became blocked by debris. There have been no reports of property flooding from 'main river'."* It may be that the reported flooding refers to surface water flooding rather than inundation from a fluvial source.

Recorded levels are available from the 1979 event, which have been supplied by NRW. Numerous surveyed water level points were taken which have been used as part of subsequent studies to verify model outputs. JBA used the recorded levels to compare modelled water depths against recorded

levels at numerous places within Risca, as part of the Risca Hazard Mapping Study³ (Aug 2009). However, it is worth remembering that various improvement works have been undertaken following the 1979 flood event (including construction of flood defences, channel improvements and removal of some structures) and, as some of these have been included in the model runs, only a tentative comparison can be made between the 1979 event and the modelled events.

It is reported in the Risca 2009 study that a review of the Rhiwderin Gauge was undertaken after the initial study as the model was giving significantly higher water levels than recorded spot gauging for the same flows. Notably, the draft results from this study showed widespread flooding for a 1 in 20 year event, which was considered comparable to October 1998 where no flooding was experienced. This highlighted a significant discrepancy between modelled and observed flooding. This meant that the model results at Rhiwderin Gauge did not correlate well with the 1998 flood event and other recorded historic events. This prompted a review of the data, which was subsequently carried out by Royal Haskoning in March 2011.

A review of the gauge data at Rhiwderin and Aberbeeg will be undertaken in order to identify notable events within the gauged record. These selected flood events will be used to provide a 'sensibility check' of the model outputs.

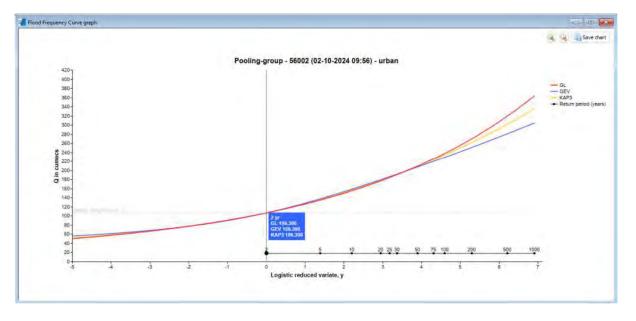
In summary, NRW has provided some historic flood outline and other historic evidence which has been geo-referenced to support the development of the model as part of this study. It is noted that an existing model report published by JBA in 2009 indicates that the sparse coverage of gauging stations and poor quality of data suggests that model calibration using these data, particularly 56019 Ebbw @ Aberbeeg, could potentially misrepresent the hydrological processes occurring within the catchment. The report suggested that the Aberbeeg gauge be reviewed to check that ratings perform well at high flows.

In response to a 'Flood Warning' being issued for the Cwm area during a large fluvial event in February 2016, NRW undertook a post-event walk over and survey of wrack marks at Cwm. Observations were also made of flood levels at locations downstream.

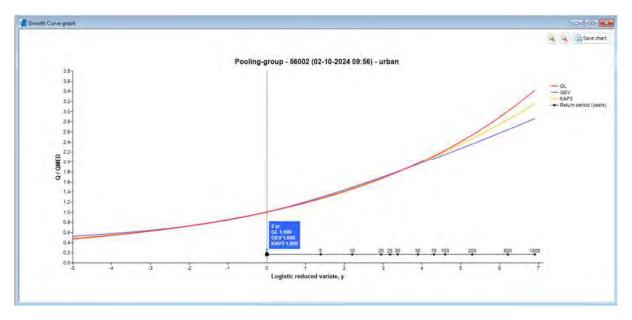
³ SFRM Framework Risca Hazard Mapping Study; August 2009, FINAL REPORT

8 ANNEX - SUPPORTING INFORMATION

8.4 Pooling Group


	DISTANCE	Years of									
Original Pooling group	SDM	data	AREA	SAAR	FPEXT	FARL	URBEXT2000	BFIHOST19	DPLBAR	DPSBAR	PROPWET
56002 (Ebbw @ Rhiwderin)	0	65	211.82	1454	0.039	0.975	0.074	0.499	22.27	182.3	0.49
49001 (Camel @ Denby)	0.186	55	209.942	1338	0.034	0.987	0.012	0.481	15.94	87.9	0.45
27096 (Wharfe @ Netherside Hall)	0.225	20	215.22	1583	0.035	0.998	0.002	0.363	16.96	165.4	0.62
60013 (Cothi @ Pont Ynys Brechfa)	0.267	10	243.005	1538	0.034	0.997	0.001	0.439	21.21	169.1	0.57
8013 (Feshie @ Feshie Bridge)	0.285	31	229.627	1286	0.041	0.993	0	0.385	18.61	180.8	0.70
79005 (Cluden Water @ Fiddlers Ford)	0.312	60	237.225	1422	0.062	0.985	0.001	0.468	23.35	129.8	0.64
72005 (Lune @ Killington)	0.315	54	219.235	1670	0.048	0.995	0.002	0.39	21.58	174.5	0.71
76021 (Eden @ Great Musgrave Bridge)	0.315	23	223.025	1270	0.047	0.997	0.004	0.414	13.54	117.8	0.66
25018 (Tees @ Middleton in Teesdale)	0.317	50	242.012	1533	0.034	0.939	0.001	0.31	19.15	109.3	0.6
63001 (Ystwyth @ Pont Llolwyn)	0.333	62	170.1	1456	0.047	0.99	0.001	0.43	19.16	159.8	0.63
15013 (Almond @ Almondbank)	0.334	37	173.28	1394	0.031	0.996	0.001	0.422	28.84	196.9	0.61
54038 (Tanat @ Llanyblodwel)	0.338	50	241.125	1274	0.038	0.996	0.001	0.427	19.42	202.4	0.51
56006 (Usk @ Trallong)	0.34	44	184.735	1674	0.036	0.963	0.002	0.424	13.11	136.4	0.62
48011 (Fowey @ Restormel)	0.341	22	167.2	1435	0.035	0.985	0.003	0.45	17.2	113.3	0.46

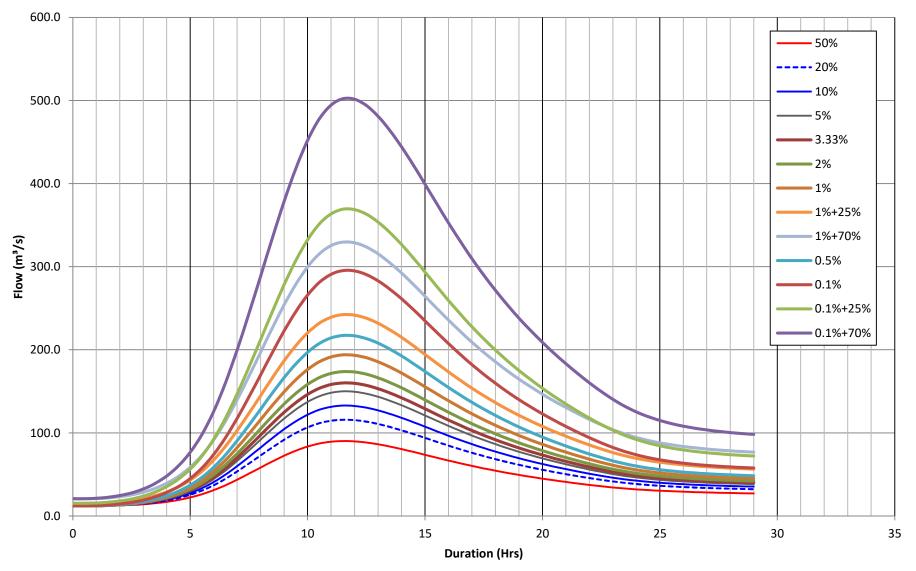
River Ebbw


Hetero	geneit	y and	Good	ness	of	Fit

Fitting Z value Gen. Logistic 1.7187 Gen. Extreme Value -0.3581 Pearson Type III -1.6181 Sen. Pareto -5.0200 Kappa 3 0.9646 * Distribution gives an acceptable fit (absolute Z value < 1.645) The pooling group is acceptably homogeneous and a review of the pooling group is not required. Save Cancel Save Cancel	Number of simulations	500	Apply	1	Number of simulations 500	Apply 1
Gen. Logistic 1.7187 Gen. Extreme Value -0.3581 Pearson Type III -1.6181 Gen. Pareto -5.0200 Kappa 3 0.9646 * Distribution gives an acceptable fit (absolute Z value < 1.645)	Fitting	Z value				0.0502
Gen. Extreme Value -0.3581 - Pearson Type III -1.6181 - Gen. Pareto -5.0200 - Kappa 3 0.9646 - Distribution gives an acceptable fit (absolute Z value < 1.645)	Gen Logistic	1 7187				
Pearson Type III -1.6181 • Gen. Pareto -5.0200 Kappa 3 0.9646 • Lowest absolute Z-value indicates best fit • * Distribution gives an acceptable fit (absolute Z value < 1.645)						
Gen. Pareto -5,0200 Kappa 3 0.9646 Lowest absolute Z-value indicates best fit * Distribution gives an acceptable fit (absolute Z value < 1.645)	Pearson Type III	-1.6181				
Independent of the pooling group is not required. Lowest absolute Z-value indicates best fit * Distribution gives an acceptable fit (absolute Z value < 1.645)	Gen. Pareto	-5.0200			Standardised test value H2	1.1210
* Distribution gives an acceptable fit (absolute Z value < 1.645) Save Cancel Standard deviation of L-CV Dbserved 0.0206 Simulated mean 0.0205 Simulated S.D. 0.0041 Standardised test value H1 0.0123	Карра 3	0.9646				
Observed 0.0206 Simulated mean 0.0205 Save Cancel Standardised test value H1 0.0123	Lowest absolute Z-valu	e indicates bea	st fit			
Save Cancel Standardised test value H1 0.0123	* Distribution gives an ad	cceptable fit (a	bsolute Z v	alue < 1.645)	Standard deviation of L-CV	
Save Cancel Simulated S.D. 0.0041 Standardised test value H1 0.0123					Observed	0.0206
Save Cancel Standardised test value H1 0.0123					Simulated mean	0.0205
Standalused test value H1 0.0123					Simulated S.D.	0.0041
Acceptably homogeneous		Sa	ave	Cancel	Standardised test value H1	0.0123
					Acceptably homogeneous	

Flood Frequency Curve

Growth Curve


8 ANNEX - SUPPORTING INFORMATION

8.5 ReFH2 Hydrographs

Design Hydrographs (ReFH2)

Ebbw River

Land at Pontymister, Risca

UK Design Flood Estimation

Generated on 30 September 2024 13:29:39 by Bethan.LloydJones Printed from the ReFH2 Flood Modelling software package, version 4.1.8704.23947

Summary of estimate using the Flood Estimation Handbook revitalised flood hydrograph method (ReFH2)

Site details

Checksum: E31A-6357

Site name: Updated - FEH_Catchment_Descriptors_325850_188900_v5_0_1

Easting: 325850

Northing: 188900

Country: England, Wales or Northern Ireland

Catchment Area (km²): 211.82

Using plot scale calculations: No

Model: 2.3

Site description: None

Model run: 100 year

Summary of results

Rainfall - FEH22 (mm):	95.65	Total runoff (ML):	5931.62
Total Rainfall (mm):	75.58	Total flow (ML):	16006.72
Peak Rainfall (mm):	8.57	Peak flow (m³/s):	193.94

Parameters

Where the user has overriden a system-generated value, this original value is shown in square brackets after the value used.

* Indicates that the user locked the duration/timestep

Rainfall parameters (Rainfall - FEH22)

Name	Value	User-defined?
Duration (hh:mm:ss)	11:30:00	No
Timestep (hh:mm:ss)	00:30:00	No
SCF (Seasonal correction factor)	0.87	No
ARF (Areal reduction factor)	0.91	No
Seasonality	Winter	No
Loss model parameters		
Name	Value	User-defined?
Cini (mm)	91.13	No
Cmax (mm)	377.2	No
Use alpha correction factor	No	No
Alpha correction factor	n/a	No

Routing model parameters

*The URBEXT2000 has been modified so that the 'Urban' proportion does not exceed 1.

Page 1 of 10

Name	Value	User-defined?
Tp (hr)	4.89	No
Up	0.65	No
Uk	0.8	No
Baseflow model parameters		
Name	Value	User-defined?
BF0 (m ³ /s)	13.06	No
BL (hr)	55.52	No
BR	1.93	No
Urbanisation parameters		
Name	Value	User-defined?
Sewer capacity (m ³ /s)	0	No
Exporting drained area (km ²)	0	No
Urban area (km²)	33.04 [32.56]	Yes
Effective URBEXT2000	0.1	n/a
Impervious runoff factor	0.7	No
Imperviousness factor	0.4	No
Tp scaling factor	0.75	No
Depression storage depth (mm)	0.5	No

Page 2 of 10

Time series data

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
00:00:00	0.687	0.000	0.187	0.000	12.241	12.241
00:30:00	0.881	0.000	0.244	0.089	12.131	12.221
01:00:00	1.127	0.000	0.316	0.385	12.026	12.411
01:30:00	1.442	0.000	0.409	0.950	11.926	12.875
02:00:00	1.842	0.000	0.530	1.861	11.836	13.697
02:30:00	2.349	0.000	0.688	3.221	11.761	14.982
03:00:00	2.990	0.000	0.896	5.163	11.706	16.870
03:30:00	3.797	0.000	1.171	7.860	11.681	19.541
04:00:00	4.807	0.000	1.534	11.518	11.695	23.212
04:30:00	6.052	0.000	2.015	16.351	11.762	28.113
05:00:00	7.530	0.000	2.636	22.712	11.900	34.612
05:30:00	8.573	0.000	3.177	30.949	12.133	43.081
06:00:00	7.530	0.000	2.944	41.454	12.487	53.941
06:30:00	6.052	0.000	2.470	54.229	12.993	67.221
07:00:00	4.807	0.000	2.028	68.760	13.678	82.438
07:30:00	3.797	0.000	1.644	84.393	14.564	98.957
08:00:00	2.990	0.000	1.320	100.46 2		116.126
08:30:00	2.349	0.000	1.053	116.26 7	16.981	133.248
09:00:00	1.842	0.000	0.835	131.04 5		149.558
09:30:00	1.442	0.000	0.660	143.97		164.218
10:00:00	1.127	0.000	0.520	154.28	22.160	176.444
10:30:00	0.881	0.000		161.45		185.677
11:00:00	0.687	0.000	0.320	165.10 1		191.477
11:30:00	0.000	0.000	0.000	165.36 4		193.943
12:00:00	0.000	0.000	0.000	162.67 9		193.457
12:30:00	0.000	0.000	0.000	157.56 0	32.928	190.488
13:00:00	0.000	0.000	0.000	150.61 2	34.995	185.607
13:30:00	0.000	0.000	0.000	142.36 4		179.315

*The URBEXT2000 has been modified so that the 'Urban' proportion does not exceed 1.

Page 3 of 10

Tin (hh:mm:s		Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
14:00:0	0.000	0.000	0.000	133.23 2	38.775	172.007
14:30:0	0.000	0.000	0.000	123.54 2	40.455	163.997
15:00:0	0.000	0.000	0.000	113.59 1	41.982	155.573
15:30:0	0.000	0.000	0.000	103.68 2	43.355	147.037
16:00:0	0.000	0.000	0.000	94.123	44.575	138.698
16:30:0	0.000	0.000	0.000	84.989	45.649	130.638
17:00:0	0.000	0.000	0.000	76.435	46.584	123.019
17:30:0	0.000	0.000	0.000	68.478	47.391	115.869
18:00:0	0.000	0.000	0.000	61.068	48.076	109.144
18:30:0	0.000	0.000	0.000	54.187	48.649	102.837
19:00:0	0.000	0.000	0.000	47.827	49.116	96.943
19:30:0	0.000	0.000	0.000	41.956	49.482	91.438
20:00:0	0.000	0.000	0.000	36.523	49.753	86.276
20:30:0	0.000	0.000	0.000	31.480	49.934	81.414
21:00:0	0.000	0.000	0.000	26.796	50.029	76.825
21:30:0	0.000	0.000	0.000	22.452	50.043	72.495
22:00:0	0.000	0.000	0.000	18.421	49.982	68.403
22:30:0	0.000	0.000	0.000	14.736	49.850	64.586
23:00:0	0.000	0.000	0.000	11.467	49.655	61.122
23:30:0	0.000	0.000	0.000	8.700	49.405	58.105
24:00:0	0.000	0.000	0.000	6.471	49.109	55.581
24:30:0	0.000	0.000	0.000	4.727	48.778	53.505
25:00:0	0.000	0.000	0.000	3.382	48.420	51.803
25:30:0	0.000	0.000	0.000	2.353	48.042	50.395
26:00:0	0.000	0.000	0.000	1.577	47.650	49.227
26:30:0	0.000	0.000	0.000	1.005	47.248	48.253
27:00:0	0.000	0.000	0.000	0.595	46.840	47.435
27:30:0	0.000	0.000	0.000	0.314	46.429	46.743
28:00:0	0.000	0.000	0.000	0.135	46.017	46.152
28:30:0	0.000	0.000	0.000	0.036	45.606	45.643
29:00:0	0.000	0.000	0.000	0.001	45.198	45.199
29:30:0	0.000	0.000	0.000	0.000	44.793	44.793
30:00:0	0.000	0.000	0.000	0.000	44.391	44.391

Page 4 of 10

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
30:30:00	0.000	0.000	0.000	0.000	43.993	43.993
31:00:00	0.000	0.000	0.000	0.000	43.599	43.599
31:30:00	0.000	0.000	0.000	0.000	43.208	43.208
32:00:00	0.000	0.000	0.000	0.000	42.820	42.820
32:30:00	0.000	0.000	0.000	0.000	42.437	42.437
33:00:00	0.000	0.000	0.000	0.000	42.056	42.056
33:30:00	0.000	0.000	0.000	0.000	41.679	41.679
34:00:00	0.000	0.000	0.000	0.000	41.305	41.305
34:30:00	0.000	0.000	0.000	0.000	40.935	40.935
35:00:00	0.000	0.000	0.000	0.000	40.568	40.568
35:30:00	0.000	0.000	0.000	0.000	40.204	40.204
36:00:00	0.000	0.000	0.000	0.000	39.844	39.844
36:30:00	0.000	0.000	0.000	0.000	39.487	39.487
37:00:00	0.000	0.000	0.000	0.000	39.133	39.133
37:30:00	0.000	0.000	0.000	0.000	38.782	38.782
38:00:00	0.000	0.000	0.000	0.000	38.434	38.434
38:30:00	0.000	0.000	0.000	0.000	38.090	38.090
39:00:00	0.000	0.000	0.000	0.000	37.748	37.748
39:30:00	0.000	0.000	0.000	0.000	37.410	37.410
40:00:00	0.000	0.000	0.000	0.000	37.074	37.074
40:30:00	0.000	0.000	0.000	0.000	36.742	36.742
41:00:00	0.000	0.000	0.000	0.000	36.413	36.413
41:30:00	0.000	0.000	0.000	0.000	36.086	36.086
42:00:00	0.000	0.000	0.000	0.000	35.763	35.763
42:30:00	0.000	0.000	0.000	0.000	35.442	35.442
43:00:00	0.000	0.000	0.000	0.000	35.124	35.124
43:30:00	0.000	0.000	0.000	0.000	34.809	34.809
44:00:00	0.000	0.000	0.000	0.000	34.497	34.497
44:30:00	0.000	0.000	0.000	0.000	34.188	34.188
45:00:00	0.000	0.000	0.000	0.000	33.882	33.882
45:30:00	0.000	0.000	0.000	0.000	33.578	33.578
46:00:00	0.000	0.000	0.000	0.000	33.277	33.277
46:30:00	0.000	0.000	0.000	0.000	32.978	32.978
47:00:00	0.000	0.000	0.000	0.000	32.683	32.683
47:30:00	0.000	0.000	0.000	0.000	32.390	32.390

Page 5 of 10

Time (hh:mm:ss)	Rain (mm)	Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m³/s)	Baseflow (m³/s)	Total Flow (m³/s)
48:00:00	0.000	0.000	0.000	0.000	32.099	32.099
48:30:00	0.000	0.000	0.000	0.000	31.812	31.812
49:00:00	0.000	0.000	0.000	0.000	31.526	31.526
49:30:00	0.000	0.000	0.000	0.000	31.244	31.244
50:00:00	0.000	0.000	0.000	0.000	30.964	30.964
50:30:00	0.000	0.000	0.000	0.000	30.686	30.686
51:00:00	0.000	0.000	0.000	0.000	30.411	30.411
51:30:00	0.000	0.000	0.000	0.000	30.138	30.138
52:00:00	0.000	0.000	0.000	0.000	29.868	29.868
52:30:00	0.000	0.000	0.000	0.000	29.600	29.600
53:00:00	0.000	0.000	0.000	0.000	29.335	29.335
53:30:00	0.000	0.000	0.000	0.000	29.072	29.072
54:00:00	0.000	0.000	0.000	0.000	28.811	28.811
54:30:00	0.000	0.000	0.000	0.000	28.553	28.553
55:00:00	0.000	0.000	0.000	0.000	28.297	28.297
55:30:00	0.000	0.000	0.000	0.000	28.043	28.043
56:00:00	0.000	0.000	0.000	0.000	27.792	27.792
56:30:00	0.000	0.000	0.000	0.000	27.543	27.543
57:00:00	0.000	0.000	0.000	0.000	27.296	27.296
57:30:00	0.000	0.000	0.000	0.000	27.051	27.051
58:00:00	0.000	0.000	0.000	0.000	26.809	26.809
58:30:00	0.000	0.000	0.000	0.000	26.568	26.568
59:00:00	0.000	0.000	0.000	0.000	26.330	26.330
59:30:00	0.000	0.000	0.000	0.000	26.094	26.094
60:00:00	0.000	0.000	0.000	0.000	25.860	25.860
60:30:00	0.000	0.000	0.000	0.000	25.628	25.628
61:00:00	0.000	0.000	0.000	0.000	25.399	25.399
61:30:00	0.000	0.000	0.000	0.000	25.171	25.171
62:00:00	0.000	0.000	0.000	0.000	24.945	24.945
62:30:00	0.000	0.000	0.000	0.000	24.722	24.722
63:00:00	0.000	0.000	0.000	0.000	24.500	24.500
63:30:00	0.000	0.000	0.000	0.000	24.280	24.280
64:00:00	0.000	0.000	0.000	0.000	24.063	24.063
64:30:00	0.000	0.000	0.000	0.000	23.847	23.847
65:00:00	0.000	0.000	0.000	0.000	23.633	23.633

Page 6 of 10

(hh:m	Time nm:ss)	Rain (mm)	Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m³/s)	Baseflow (m³/s)	Total Flow (m³/s)
65:	:30:00	0.000	0.000	0.000	0.000	23.421	23.421
66:	:00:00	0.000	0.000	0.000	0.000	23.211	23.211
66:	:30:00	0.000	0.000	0.000	0.000	23.003	23.003
67:	:00:00	0.000	0.000	0.000	0.000	22.797	22.797
67:	:30:00	0.000	0.000	0.000	0.000	22.593	22.593
68:	:00:00	0.000	0.000	0.000	0.000	22.390	22.390
68:	:30:00	0.000	0.000	0.000	0.000	22.189	22.189
69:	:00:00	0.000	0.000	0.000	0.000	21.990	21.990
69:	:30:00	0.000	0.000	0.000	0.000	21.793	21.793
70:	:00:00	0.000	0.000	0.000	0.000	21.598	21.598
70:	:30:00	0.000	0.000	0.000	0.000	21.404	21.404
71:	:00:00	0.000	0.000	0.000	0.000	21.212	21.212
71:	:30:00	0.000	0.000	0.000	0.000	21.022	21.022
72:	:00:00	0.000	0.000	0.000	0.000	20.834	20.834
72:	:30:00	0.000	0.000	0.000	0.000	20.647	20.647
73:	:00:00	0.000	0.000	0.000	0.000	20.462	20.462
73:	:30:00	0.000	0.000	0.000	0.000	20.278	20.278
74:	:00:00	0.000	0.000	0.000	0.000	20.097	20.097
74:	:30:00	0.000	0.000	0.000	0.000	19.916	19.916
75:	:00:00	0.000	0.000	0.000	0.000	19.738	19.738
75:	:30:00	0.000	0.000	0.000	0.000	19.561	19.561
76:	:00:00	0.000	0.000	0.000	0.000	19.386	19.386
76:	:30:00	0.000	0.000	0.000	0.000	19.212	19.212
77:	:00:00	0.000	0.000	0.000	0.000	19.039	19.039
77:	:30:00	0.000	0.000	0.000	0.000	18.869	18.869
78:	:00:00	0.000	0.000	0.000	0.000	18.700	18.700
78:	:30:00	0.000	0.000	0.000	0.000	18.532	18.532
79:	:00:00	0.000	0.000	0.000	0.000	18.366	18.366
79:	:30:00	0.000	0.000	0.000	0.000	18.201	18.201
80:	:00:00	0.000	0.000	0.000	0.000	18.038	18.038
80:	:30:00	0.000	0.000	0.000	0.000	17.876	17.876
81:	:00:00	0.000	0.000	0.000	0.000	17.716	17.716
81:	:30:00	0.000	0.000	0.000	0.000	17.557	17.557
82:	:00:00	0.000	0.000	0.000	0.000	17.400	17.400
82:	:30:00	0.000	0.000	0.000	0.000	17.244	17.244

Page 7 of 10

Tim (hh:mm:ss		Sewer Loss (m³/s)	Net Rain (mm)	Runoff (m ³ /s)	Baseflow (m³/s)	Total Flow (m³/s)
83:00:0	0 0.000	0.000	0.000	0.000	17.089	17.089
83:30:0	0 0.000	0.000	0.000	0.000	16.936	16.936
84:00:0	0 0.000	0.000	0.000	0.000	16.784	16.784
84:30:0	0 0.000	0.000	0.000	0.000	16.634	16.634
85:00:0	0 0.000	0.000	0.000	0.000	16.485	16.485
85:30:0	0 0.000	0.000	0.000	0.000	16.337	16.337
86:00:0	0 0.000	0.000	0.000	0.000	16.190	16.190
86:30:0	0 0.000	0.000	0.000	0.000	16.045	16.045
87:00:0	0 0.000	0.000	0.000	0.000	15.901	15.901
87:30:0	0 0.000	0.000	0.000	0.000	15.759	15.759
88:00:0	0 0.000	0.000	0.000	0.000	15.617	15.617
88:30:0	0 0.000	0.000	0.000	0.000	15.477	15.477
89:00:0	0 0.000	0.000	0.000	0.000	15.339	15.339
89:30:0	0 0.000	0.000	0.000	0.000	15.201	15.201
90:00:0	0 0.000	0.000	0.000	0.000	15.065	15.065
90:30:0	0 0.000	0.000	0.000	0.000	14.930	14.930
91:00:0	0 0.000	0.000	0.000	0.000	14.796	14.796
91:30:0	0 0.000	0.000	0.000	0.000	14.663	14.663
92:00:0	0 0.000	0.000	0.000	0.000	14.532	14.532
92:30:0	0 0.000	0.000	0.000	0.000	14.402	14.402
93:00:0	0 0.000	0.000	0.000	0.000	14.273	14.273
93:30:0	0 0.000	0.000	0.000	0.000	14.145	14.145
94:00:0	0 0.000	0.000	0.000	0.000	14.018	14.018
94:30:0	0 0.000	0.000	0.000	0.000	13.892	13.892
95:00:0	0 0.000	0.000	0.000	0.000	13.768	13.768
95:30:0	0 0.000	0.000	0.000	0.000	13.644	13.644
96:00:0	0 0.000	0.000	0.000	0.000	13.522	13.522
96:30:0	0 0.000	0.000	0.000	0.000	13.401	13.401
97:00:0	0 0.000	0.000	0.000	0.000	13.280	13.280
97:30:0	0 0.000	0.000	0.000	0.000	13.161	13.161
98:00:0	0 0.000	0.000	0.000	0.000	13.043	13.043
98:30:0	0 0.000	0.000	0.000	0.000	12.926	12.926
99:00:0	0 0.000	0.000	0.000	0.000	12.811	12.811
99:30:0	0 0.000	0.000	0.000	0.000	12.696	12.696
100:00:0	0 0.000	0.000	0.000	0.000	12.582	12.582

Page 8 of 10

	Time (hh:mm:ss)		Sewer Loss (m³/s)			Baseflow (m³/s)	Total Flow (m³/s)
-	100:30:00	0.000	0.000	0.000	0.000	12.469	12.469
	101:00:00	0.000	0.000	0.000	0.000	12.357	12.357

Page 9 of 10

Appendix

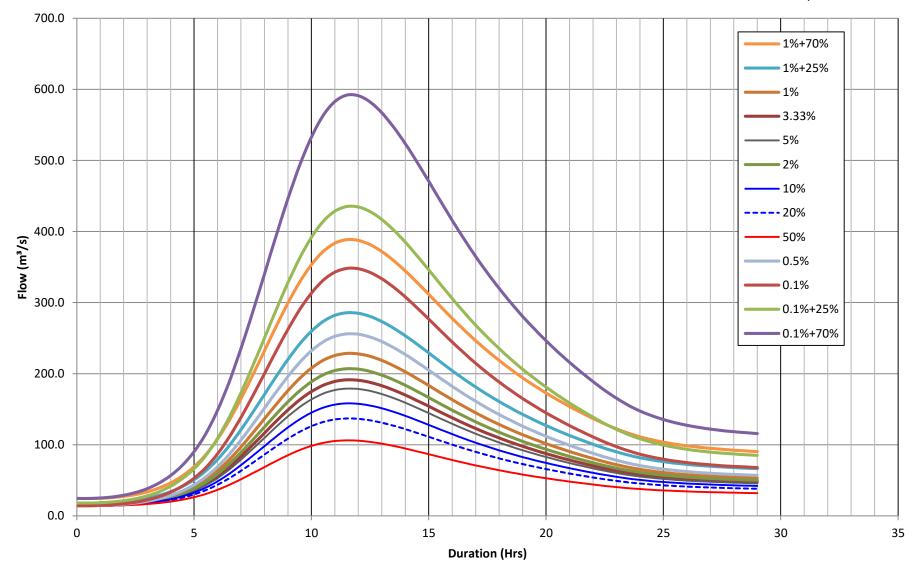
Catchment descriptors *

Name	Value	User-defined value used?
Area (km²)	211.82	No
ALTBAR	317	No
ASPBAR	183	No
ASPVAR	0.18	No
BFIHOST	0.54	No
BFIHOST19	0.5	No
DPLBAR (km)	22.27	No
DPSBAR (mkm-1)	182.3	No
FARL	0.98	No
LDP	41.98	No
PROPWET	0.49	No
RMED1H	11.8	No
RMED1D	52.7	No
RMED2D	70	No
SAAR (mm)	1454	No
SAAR4170 (mm)	1529	No
SPRHOST	29.79	No
URBEXT2000	0.1 [0.1]	Yes
URBEXT1990	0.08	No
URBCONC	0.74	No
URBLOC	0.95	No
DDF parameter C	-0.03	No
DDF parameter D1	0.46	No
DDF parameter D2	0.44	No
DDF parameter D3	0.35	No
DDF parameter E	0.29	No
DDF parameter F	2.54	No
DDF parameter C (1km grid value)	-0.03	No
DDF parameter D1 (1km grid value)	0.44	No
DDF parameter D2 (1km grid value)	0.41	No
DDF parameter D3 (1km grid value)	0.36	No
DDF parameter E (1km grid value)	0.28	No
DDF parameter F (1km grid value)	2.46	No
	from the FFULWah Comises or	

Values in square brackets are the original values loaded from the FEH Web Service or FEH CD-ROM

*The URBEXT2000 has been modified so that the 'Urban' proportion does not exceed 1.

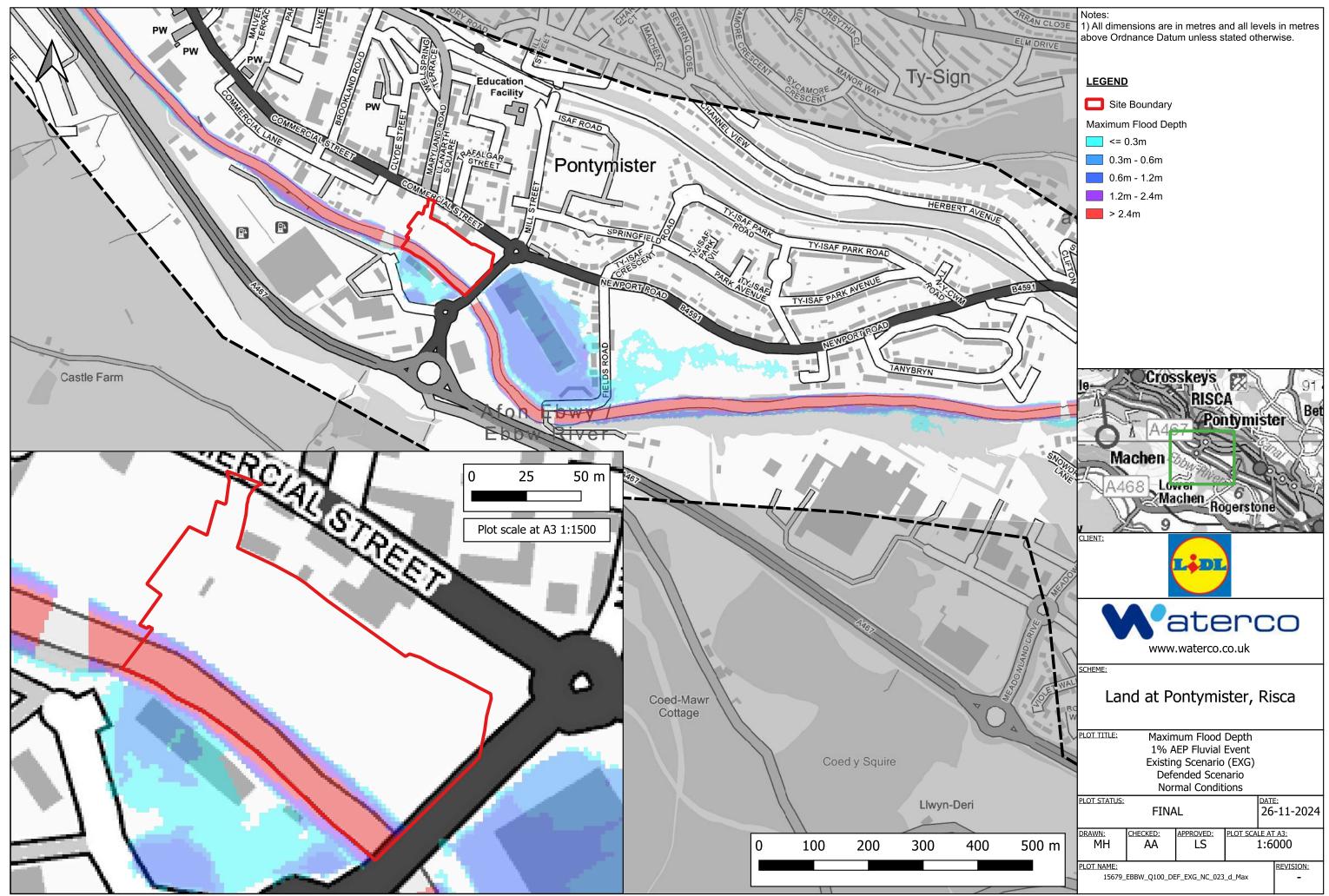
Page 10 of 10

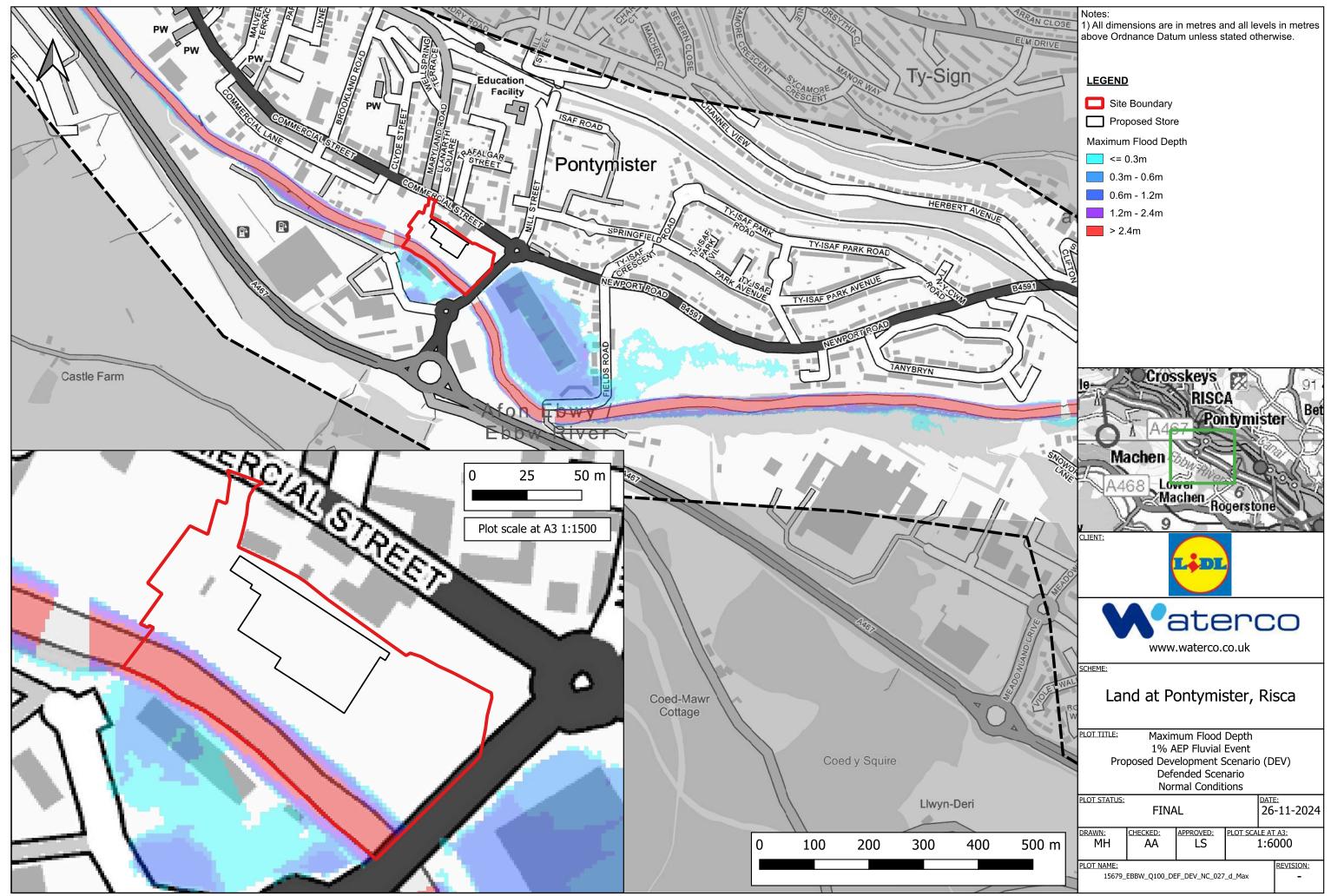

8 ANNEX - SUPPORTING INFORMATION

8.6 ReFH2 Design Hydrographs

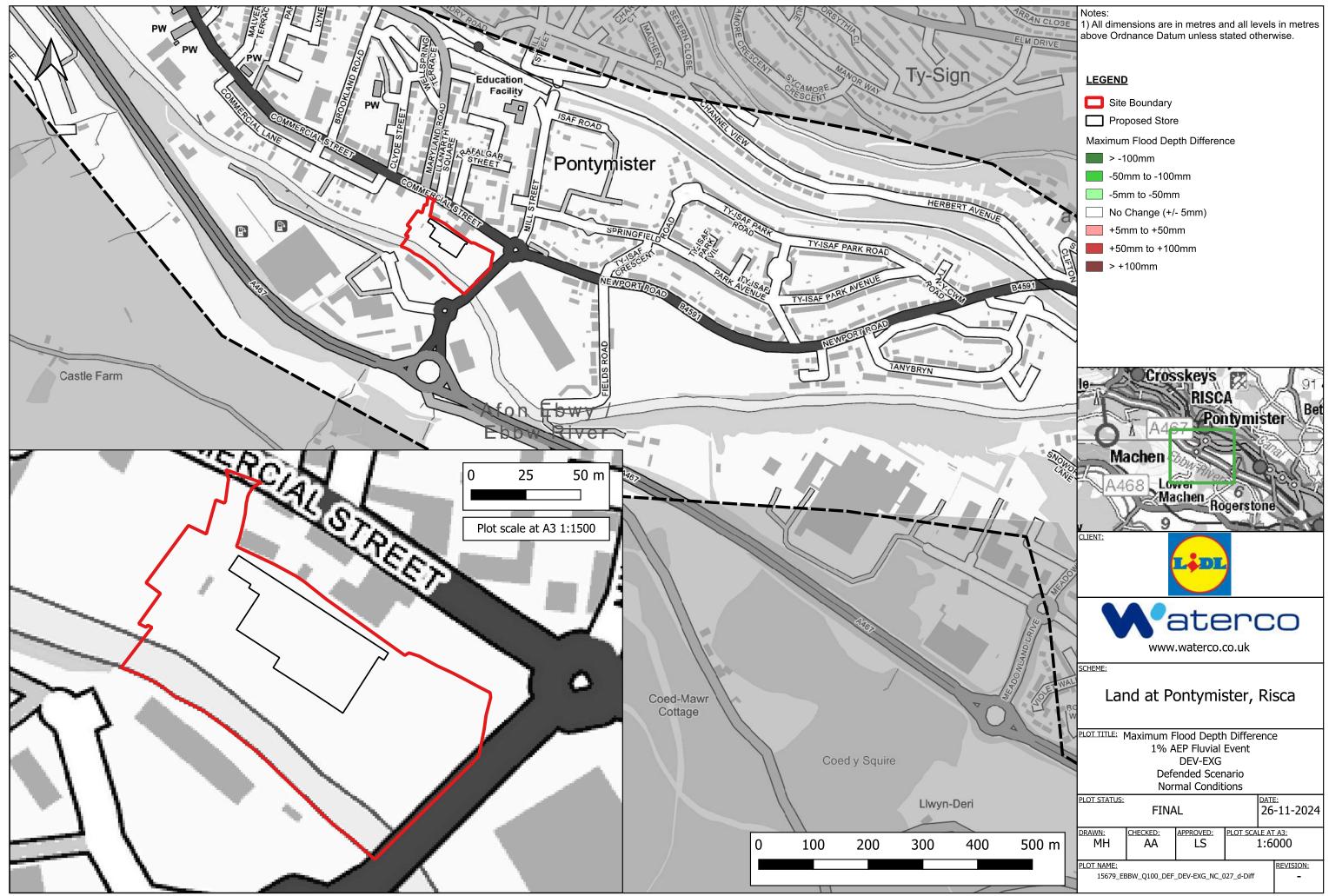
Design Hydrographs

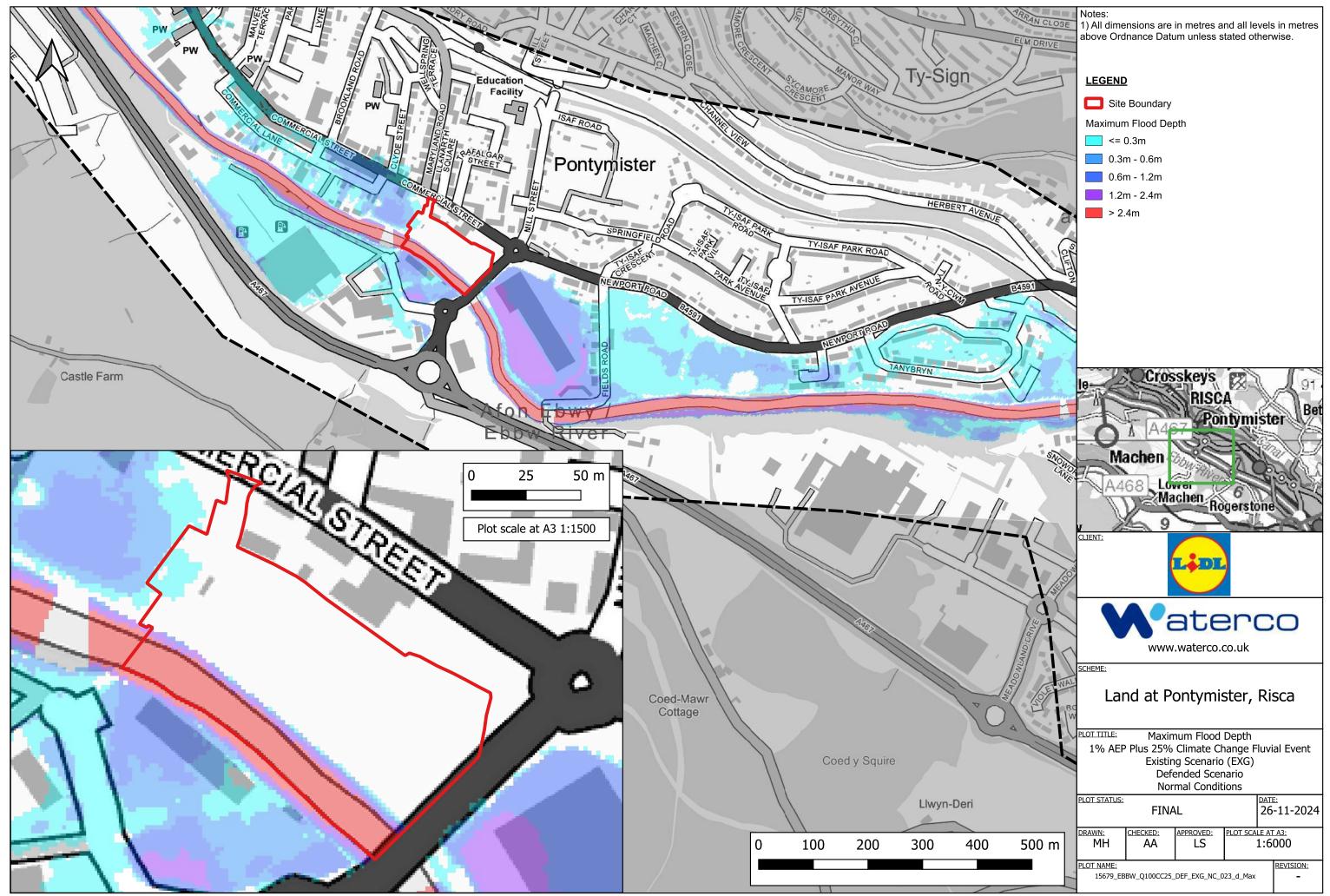
River Ebbw at Rhiwderin Gauge

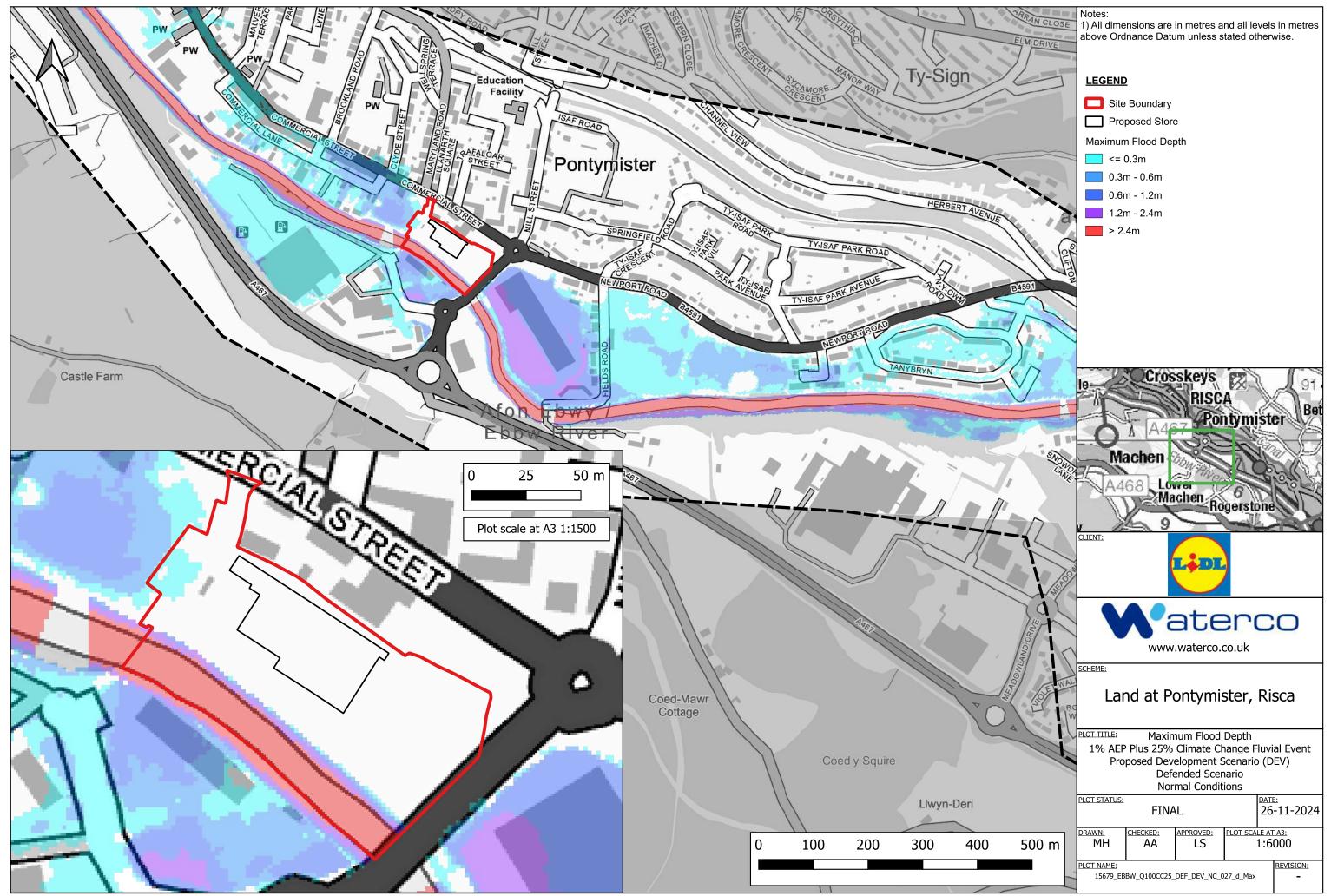

Land at Pontymister, Risca


Appendix G Simulated Flood Maps

Normal Conditions Scenario




CONTAINS OS DATA © CROWN COPYRIGHT (2024)


CONTAINS OS DATA © CROWN COPYRIGHT (2024)

CONTAINS OS DATA © CROWN COPYRIGHT (2024)

CONTAINS OS DATA © CROWN COPYRIGHT (2024)

CONTAINS OS DATA © CROWN COPYRIGHT (2024)